Optimal control approach for discontinuous dynamical systems

被引:2
|
作者
Skandari, M. H. Noori [1 ]
Ghaznavi, M. [1 ]
机构
[1] Shahrood Univ Technol, Fac Math Sci, Dept Appl Math, Shahrood, Iran
来源
关键词
discontinuous dynamical system; discretization method; optimal control problem; NONLINEAR OPTIMAL-CONTROL; SLIDING BIFURCATIONS; PARAMETERIZATION; UNIQUENESS; EXISTENCE; EQUATIONS; FEEDBACK;
D O I
10.1002/oca.2306
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this work, we consider a wide class of discontinuous dynamical systems, discontinuity of which is based on the sign (for short sgn) function. We propose a smooth optimal control problem to solve the main discontinuous system. By solving some numerical examples in mechanical engineering, we show the efficiency of our approach with respect to 2 smoothing methods for discontinuous systems.
引用
收藏
页码:1004 / 1013
页数:10
相关论文
共 50 条
  • [31] Optimal minimax filtering and control in discontinuous Volterra systems
    Basin, MV
    Guzman, IRV
    PROCEEDINGS OF THE 2000 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2000, : 904 - 908
  • [32] Singularities of discontinuous dynamical systems
    Pukhlikov, A.V.
    Doklady Akademii Nauk, 2001, 378 (04) : 456 - 459
  • [33] Discontinuous dynamical systems and synchronization
    Albert C. J. Luo
    The European Physical Journal Special Topics, 2019, 228 : 1383 - 1384
  • [34] Control of dynamical systems: An intelligent approach
    Ammar, Soukkou
    Khellaf, Abdelhafid
    Leulmi, Salah
    Grimes, Mourad
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2008, 6 (04) : 583 - 595
  • [35] H2 optimal semistable control for linear dynamical systems:: An LMI approach
    Haddad, Wassim M.
    Hui, Qing
    Chellaboina, VijaySekhar
    PROCEEDINGS OF THE 46TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2007, : 2020 - +
  • [36] H2 optimal semistable control for linear dynamical systems: An LMI approach
    Haddad, Wassim M.
    Hui, Qing
    Chellaboina, VijaySekhar
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2011, 348 (10): : 2898 - 2910
  • [37] Optimal control of nonlinear dynamical systems based on a new parallel eigenvalue decomposition approach
    Jajarmi, Amin
    Baleanu, Dumitru
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2018, 39 (02): : 1071 - 1083
  • [38] APPROACH OF A CLASS OF DISCONTINUOUS DYNAMICAL SYSTEMS OF FRACTIONAL ORDER: EXISTENCE OF SOLUTIONS
    Danca, Marius-F.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2011, 21 (11): : 3273 - 3276
  • [39] On interconnections of discontinuous dynamical systems: an input-to-state stability approach
    Heemels, W. P. M. H.
    Weiland, S.
    PROCEEDINGS OF THE 46TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2007, : 4495 - 4500
  • [40] A General Approach to Optimal Control Processes Associated with a Class of Discontinuous Control Systems: Applications to the Sliding Mode Dynamics
    Azhmyakov, Vadim
    Basin, Michael
    Gil Garcia, Arturo Enrique
    2012 IEEE INTERNATIONAL CONFERENCE ON CONTROL APPLICATIONS (CCA), 2012, : 1154 - 1159