Anti-N-order polynomial Daugavet property on Banach spaces

被引:0
|
作者
Emenyu, John [1 ]
机构
[1] Mbarara Univ Sci & Technol, Dept Math, POB 1410, Mbarara, Uganda
关键词
Banach spaces; local and uniform convexity; polynomials; Daugavet Equation; N-order Polynomial Daugavet property; anti-N-order Polynomial Daugavet property; OPERATORS; EQUATION; APPROXIMATION; MAPPINGS;
D O I
10.22075/ijnaa.2019.16371.1865
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We generalize the notion of the anti-Daugavet property (a-DP) to the anti -N-order Polynomial Daugavet property (a-NPDP) for Banach spaces by identifying a good spectrum of a polynomial and prove that locally uniformly alternatively convex or smooth Banach spaces have the a-mDP for rank-1 polynomials. We then prove that locally uniformly convex Banach spaces have the aNPDP for compact polynomials if and only if their norms are eigenvalues, and uniformly convex Banach spaces have the a-NPDP for continuous polynomials if and only if their norms belong to the approximate spectra.
引用
收藏
页码:1097 / 1105
页数:9
相关论文
共 50 条
  • [41] The Daugavet property in spaces of vector-valued Lipschitz functions
    Zoca, Abraham Rueda
    JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 286 (02)
  • [42] The Daugavet equation in Banach spaces with alternatively convex-smooth duals
    Wojcik, Pawel
    KYOTO JOURNAL OF MATHEMATICS, 2018, 58 (04) : 915 - 921
  • [43] THE GEOMETRY OF Lp-SPACES OVER ATOMLESS MEASURE SPACES AND THE DAUGAVET PROPERTY
    Sanchez Perez, Enrique A.
    Werner, Dirk
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2011, 5 (01): : 167 - 180
  • [44] A pseudo-Daugavet property for narrow projections in Lorentz spaces
    Popov, MM
    Randrianantoanina, B
    ILLINOIS JOURNAL OF MATHEMATICS, 2002, 46 (04) : 1313 - 1338
  • [45] Banach Spaces with the PC Property
    V. I. Rybakov
    Mathematical Notes, 2004, 76 : 525 - 533
  • [46] Geometry of Banach spaces with property β
    A. S. Granero
    M. Jiménez Sevilla
    J. P. Moreno
    Israel Journal of Mathematics, 1999, 111 : 263 - 273
  • [47] POLYNOMIAL PROPERTIES OF BANACH-SPACES
    CHOI, YS
    KIM, SG
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 190 (01) : 203 - 210
  • [48] Polynomial algebras on classical Banach spaces
    Hajek, P
    ISRAEL JOURNAL OF MATHEMATICS, 1998, 106 (1) : 209 - 220
  • [49] Note on a property of the Banach spaces
    Freire, Nuno C.
    Veiga, Maria Fernanda
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2012, 57 (01): : 107 - 110
  • [50] Geometry of Banach spaces with property β
    Granero, AS
    Sevilla, MJ
    Moreno, JP
    ISRAEL JOURNAL OF MATHEMATICS, 1999, 111 (1) : 263 - 273