Anti-N-order polynomial Daugavet property on Banach spaces

被引:0
|
作者
Emenyu, John [1 ]
机构
[1] Mbarara Univ Sci & Technol, Dept Math, POB 1410, Mbarara, Uganda
关键词
Banach spaces; local and uniform convexity; polynomials; Daugavet Equation; N-order Polynomial Daugavet property; anti-N-order Polynomial Daugavet property; OPERATORS; EQUATION; APPROXIMATION; MAPPINGS;
D O I
10.22075/ijnaa.2019.16371.1865
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We generalize the notion of the anti-Daugavet property (a-DP) to the anti -N-order Polynomial Daugavet property (a-NPDP) for Banach spaces by identifying a good spectrum of a polynomial and prove that locally uniformly alternatively convex or smooth Banach spaces have the a-mDP for rank-1 polynomials. We then prove that locally uniformly convex Banach spaces have the aNPDP for compact polynomials if and only if their norms are eigenvalues, and uniformly convex Banach spaces have the a-NPDP for continuous polynomials if and only if their norms belong to the approximate spectra.
引用
收藏
页码:1097 / 1105
页数:9
相关论文
共 50 条
  • [21] The Daugavet Property and Weak Neighborhoods in Banach Lattices
    Acosta, M. D.
    Kaminska, A.
    Mastylo, M.
    JOURNAL OF CONVEX ANALYSIS, 2012, 19 (03) : 875 - 912
  • [22] The Daugavet property for spaces of Lipschitz functions
    Ivakhno, Yevgen
    Kadets, Vladimir
    Werner, Dirk
    MATHEMATICA SCANDINAVICA, 2007, 101 (02) : 261 - 279
  • [23] The Daugavet and Delta-constants of points in Banach spaces
    Choi, Geunsu
    Jung, Mingu
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2024,
  • [24] THE DAUGAVET EQUATION IN UNIFORMLY CONVEX BANACH-SPACES
    ABRAMOVICH, YA
    ALIPRANTIS, CD
    BURKINSHAW, O
    JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 97 (01) : 215 - 230
  • [25] The p-Daugavet property for function spaces
    Sanchez Perez, Enrique A.
    Werner, Dirk
    ARCHIV DER MATHEMATIK, 2011, 96 (06) : 565 - 575
  • [26] The Daugavet property in the Musielak-Orlicz spaces
    Kaminska, Anna
    Kubiak, Damian
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 427 (02) : 873 - 898
  • [27] Spaces of Operators, the ψ-Daugavet Property, and Numerical Indices
    Timur Oikhberg
    Positivity, 2005, 9 : 607 - 623
  • [28] The p-Daugavet property for function spaces
    Enrique A. Sánchez Pérez
    Dirk Werner
    Archiv der Mathematik, 2011, 96
  • [29] A characterisation of the Daugavet property in spaces of Lipschitz functions
    Garcia-Lirola, Luis
    Prochazka, Antonin
    Rueda Zoca, Abraham
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 464 (01) : 473 - 492
  • [30] Spaces of operators, the ψ-Daugavet Property, and numerical indices
    Oikhberg, T
    POSITIVITY, 2005, 9 (04) : 607 - 623