Bogoyavlenskij symmetries of ideal MHD equilibria as Lie point transformations

被引:8
|
作者
Cheviakov, AF [1 ]
机构
[1] Queens Univ, Dept Math & Stat, Kingston, ON K7L 3N6, Canada
关键词
MHD equilibrium; plasma; Lie point transformations; analytical methods; Bogoyavlenskij symmetries;
D O I
10.1016/j.physleta.2003.12.006
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this Letter we establish the correspondence between Bogoyavlenskij symmetries [Phys. Lett. A. 291 (4-5) (2001) 256, Phys. Rev. E. 66 (5) (2002) 056410] of the MHD equilibrium equations and Lie point transformations of these equations. We show that certain non-trivial Lie point transformations (that are obtained by direct application of Lie method) are equivalent to Bogoyavlenskij symmetries. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:34 / 49
页数:16
相关论文
共 50 条
  • [41] Exact solutions to magnetogasdynamics using Lie point symmetries
    Bira, B.
    Sekhar, T. Raja
    MECCANICA, 2013, 48 (05) : 1023 - 1029
  • [42] Lie point symmetries of Stratonovich stochastic differential equations
    Kozlov, Roman
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (50)
  • [43] Partial Lie-point symmetries of differential equations
    Cicogna, G
    Gaeta, G
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (03): : 491 - 512
  • [44] Lie point symmetries and commuting flows for equations on lattices
    Levi, D
    Winternitz, P
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (09): : 2249 - 2262
  • [45] Lie Point Symmetries of Differential-Difference Equations
    DING Wei~1 TANG Xiao-Yan~(2
    Communications in Theoretical Physics, 2004, 41 (05) : 645 - 648
  • [46] Lie-point symmetries and stochastic differential equations
    Gaeta, G
    Quintero, NR
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (48): : 8485 - 8505
  • [47] Lie point symmetries and ODEs passing the Painlevé test
    D. Levi
    D. Sekera
    P. Winternitz
    Journal of Nonlinear Mathematical Physics, 2018, 25 : 604 - 617
  • [48] 'Air' polynomials, Lie point symmetries and a hyperbolic equation
    Leach, P. G. L.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (18): : 5037 - 5052
  • [49] Lie-point symmetries and nonlinear dynamical systems
    Cicogna, G
    Gaeta, G
    MATHEMATICAL AND COMPUTER MODELLING, 1997, 25 (8-9) : 101 - 113
  • [50] Lie point symmetries and first integrals: The Kowalevski top
    Marcelli, M
    Nucci, MC
    JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (05) : 2111 - 2132