Bogoyavlenskij symmetries of ideal MHD equilibria as Lie point transformations

被引:8
|
作者
Cheviakov, AF [1 ]
机构
[1] Queens Univ, Dept Math & Stat, Kingston, ON K7L 3N6, Canada
关键词
MHD equilibrium; plasma; Lie point transformations; analytical methods; Bogoyavlenskij symmetries;
D O I
10.1016/j.physleta.2003.12.006
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this Letter we establish the correspondence between Bogoyavlenskij symmetries [Phys. Lett. A. 291 (4-5) (2001) 256, Phys. Rev. E. 66 (5) (2002) 056410] of the MHD equilibrium equations and Lie point transformations of these equations. We show that certain non-trivial Lie point transformations (that are obtained by direct application of Lie method) are equivalent to Bogoyavlenskij symmetries. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:34 / 49
页数:16
相关论文
共 50 条
  • [21] Heat polynomials and Lie point symmetries
    Leach, P. G. L.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 322 (01) : 288 - 297
  • [22] Random Lie-point symmetries
    Catuogno, Pedro Jose
    Lucinger, Luis Roberto
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2014, 21 (02) : 149 - 165
  • [23] C∞-symmetries and reduction of equations without lie point symmetries
    Muriel, C
    Romero, JL
    JOURNAL OF LIE THEORY, 2003, 13 (01) : 167 - 188
  • [24] IDEAL MHD STABILITY ANALYSIS FOR EQUILIBRIA WITH A PITCH MINIMUM
    MURAKAMI, Y
    YOSHIDA, Z
    INOUE, N
    NUCLEAR FUSION, 1988, 28 (03) : 449 - 455
  • [25] IDEAL MHD STABILITY RESULTS FOR EQUILIBRIA WITH INTERNAL SEPARATRICES
    MOORE, RW
    HELTON, FJ
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1977, 22 (09): : 1152 - 1152
  • [26] Lie point symmetries of difference equations and lattices
    Levi, D
    Tremblay, S
    Winternitz, P
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (47): : 8507 - 8523
  • [27] On differential equations characterized by their Lie point symmetries
    Manno, Gianni
    Oliveri, Francesco
    Vitolo, Raffaele
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 332 (02) : 767 - 786
  • [28] Lie point symmetries for reduced Ermakov systems
    Haas, F
    Goedert, J
    PHYSICS LETTERS A, 2004, 332 (1-2) : 25 - 34
  • [29] How to obtain Lie point symmetries of PDEs
    Kadhim, Sajid Mohammad
    Mohammad, Mayada Gassab
    Jassim, Hassan Kamil
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2021, 22 (04): : 306 - 324
  • [30] POINCARE NORMAL FORMS AND LIE POINT SYMMETRIES
    CICOGNA, G
    GAETA, G
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (02): : 461 - 476