Chaotic driven maps: Non-stationary hyperbolic attractor and hyperchaos

被引:5
|
作者
Barabash, Nikita, V [1 ,2 ]
Belykh, Vladimir N. [1 ,2 ]
机构
[1] Volga State Univ Water Transport, Dept Math, 5A Nesterov Str, Nizhnii Novgorod 603950, Russia
[2] Lobachevsky State Univ Nizhny Novgorod, Dept Control Theory, 23 Gagarin Ave, Nizhnii Novgorod 603950, Russia
来源
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS | 2020年 / 229卷 / 6-7期
基金
俄罗斯科学基金会; 俄罗斯基础研究基金会;
关键词
DYNAMICS; OSCILLATORS;
D O I
10.1140/epjst/e2020-900252-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we study simple examples of non-autonomous maps having different changing in time chaotic attractors. We present the definition of non-stationary hyperbolic attractor of the driven maps. We rigorously prove the existence of non-stationary hyperbolic attractor in 2D driven map and introduce a hyperchaotic attractor for autonomous 3D map of master-slave structure. Our analysis is based on the auxiliary systems approach and the construction of invariant cones.
引用
收藏
页码:1071 / 1081
页数:11
相关论文
共 50 条
  • [1] Chaotic driven maps: Non-stationary hyperbolic attractor and hyperchaos
    Nikita V. Barabash
    Vladimir N. Belykh
    The European Physical Journal Special Topics, 2020, 229 : 1071 - 1081
  • [2] Voice driven applications in non-stationary and chaotic environment
    Kwan, C.
    Li, X.
    Lao, D.
    Deng, Y.
    Ren, Z.
    Raj, B.
    Singh, R.
    Stern, R.
    2005 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS, 2006, : 127 - +
  • [3] Mixed hyperbolic/trigonometric non-stationary subdivision scheme
    Fakhar, R.
    Lamnii, A.
    Nour, M. -Y.
    Zidna, A.
    MATHEMATICAL SCIENCES, 2022, 16 (02) : 149 - 162
  • [4] Mixed hyperbolic/trigonometric non-stationary subdivision scheme
    R. Fakhar
    A. Lamnii
    M. -Y. Nour
    A. Zidna
    Mathematical Sciences, 2022, 16 : 149 - 162
  • [5] A new seven-term chaotic attractor and its hyperchaos
    Can, E.
    Uyaroglu, Y.
    OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS, 2015, 9 (5-6): : 777 - 781
  • [7] Analysis of Non-stationary Signals Based on Nonlinear Chaotic Theories
    HAN Qing-peng College of Mechanical Engineering
    InternationalJournalofPlantEngineeringandManagement, 2011, 16 (04) : 249 - 254
  • [8] Chaotic Security Based On Non-stationary Dynamics and Random Manifolds
    Thang Manh Hoang
    Tien Dzung Nguyen
    Kyamakya, Kyandoghere
    PROCEEDINGS OF INDS '09: SECOND INTERNATIONAL WORKSHOP ON NONLINEAR DYNAMICS AND SYNCHRONIZATION 2009, 2009, 4 : 65 - +
  • [9] Pseudorandom bit generator based on non-stationary logistic maps
    Liu, Lingfeng
    Miao, Suoxia
    Hu, Hanping
    Deng, Yashuang
    IET INFORMATION SECURITY, 2016, 10 (02) : 87 - 94
  • [10] On the characterization of non-stationary chaotic systems: Autonomous and non-autonomous cases
    Ray, Anirban
    Chowdhury, A. Roy
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2010, 389 (21) : 5077 - 5083