Chaotic driven maps: Non-stationary hyperbolic attractor and hyperchaos

被引:5
|
作者
Barabash, Nikita, V [1 ,2 ]
Belykh, Vladimir N. [1 ,2 ]
机构
[1] Volga State Univ Water Transport, Dept Math, 5A Nesterov Str, Nizhnii Novgorod 603950, Russia
[2] Lobachevsky State Univ Nizhny Novgorod, Dept Control Theory, 23 Gagarin Ave, Nizhnii Novgorod 603950, Russia
来源
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS | 2020年 / 229卷 / 6-7期
基金
俄罗斯科学基金会; 俄罗斯基础研究基金会;
关键词
DYNAMICS; OSCILLATORS;
D O I
10.1140/epjst/e2020-900252-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we study simple examples of non-autonomous maps having different changing in time chaotic attractors. We present the definition of non-stationary hyperbolic attractor of the driven maps. We rigorously prove the existence of non-stationary hyperbolic attractor in 2D driven map and introduce a hyperchaotic attractor for autonomous 3D map of master-slave structure. Our analysis is based on the auxiliary systems approach and the construction of invariant cones.
引用
收藏
页码:1071 / 1081
页数:11
相关论文
共 50 条
  • [11] Non-stationary Almost Sure Invariance Principle for Hyperbolic Systems with Singularities
    Jianyu Chen
    Yun Yang
    Hong-Kun Zhang
    Journal of Statistical Physics, 2018, 172 : 1499 - 1524
  • [12] Decreasing impatience: A criterion for non-stationary time preference and "Hyperbolic" discounting
    Prelec, D
    SCANDINAVIAN JOURNAL OF ECONOMICS, 2004, 106 (03): : 511 - 532
  • [13] Non-stationary Almost Sure Invariance Principle for Hyperbolic Systems with Singularities
    Chen, Jianyu
    Yang, Yun
    Zhang, Hong-Kun
    JOURNAL OF STATISTICAL PHYSICS, 2018, 172 (06) : 1499 - 1524
  • [14] Non-Stationary Non-Uniform Hyperbolicity: SRB Measures for Dissipative Maps
    Vaughn Climenhaga
    Dmitry Dolgopyat
    Yakov Pesin
    Communications in Mathematical Physics, 2016, 346 : 553 - 602
  • [15] Non-Stationary Non-Uniform Hyperbolicity: SRB Measures for Dissipative Maps
    Climenhaga, Vaughn
    Dolgopyat, Dmitry
    Pesin, Yakov
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 346 (02) : 553 - 602
  • [16] Estimation of optimal for chaotic transport frequency of non-stationary flow oscillation
    Izrailsky, Yury
    Koshel, Konstantin
    Stepanov, Dmitry
    IUTAM SYMPOSIUM ON HAMILTONIAN DYNAMICS, VORTEX STRUCTURES, TURBULENCE, 2008, 6 : 393 - 402
  • [17] Experiment-theory comparison of non-stationary and chaotic regimes in gyrotrons
    Braunmueller, F.
    Genoud, J.
    Alberti, S.
    Tran, T. M.
    Hogge, J. -Ph.
    Vuillemin, Q.
    Tran, M. Q.
    2013 38TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER, AND TERAHERTZ WAVES (IRMMW-THZ), 2013,
  • [18] Stationary and non-stationary chimeras in an ensemble of chaotic self-sustained oscillators with inertial nonlinearity
    Andrei V. Slepnev
    Andrei V. Bukh
    Tatiana E. Vadivasova
    Nonlinear Dynamics, 2017, 88 : 2983 - 2992
  • [19] Stationary and non-stationary chimeras in an ensemble of chaotic self-sustained oscillators with inertial nonlinearity
    Slepnev, Andrei V.
    Bukh, Andrei V.
    Vadivasova, Tatiana E.
    NONLINEAR DYNAMICS, 2017, 88 (04) : 2983 - 2992
  • [20] A reservoir-driven non-stationary hidden Markov model
    Chatzis, Sotirios P.
    Demiris, Yiannis
    PATTERN RECOGNITION, 2012, 45 (11) : 3985 - 3996