Mixed hyperbolic/trigonometric non-stationary subdivision scheme

被引:4
|
作者
Fakhar, R. [1 ]
Lamnii, A. [2 ]
Nour, M. -Y. [2 ]
Zidna, A. [3 ]
机构
[1] Univ Sultan Moulay Slimane, Lab LS3M, Khouribga, Morocco
[2] Univ Hassan Ist, Fac Sci & Technol, Lab MISI, Settat, Morocco
[3] Univ Lorraine, LGIPM, Metz, France
关键词
Non-stationary subdivision scheme; Asymptotic equivalence; Mixed hyperbolic; trigonometric curves; Tensor-product;
D O I
10.1007/s40096-021-00406-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper proposes two novel families of non-stationary subdivision schemes with a shape parameter of hierarchically and efficiently generating mixed hyperbolic/trigonometric curves of order 3 and 4. An analysis of convergence and smoothness of the proposed schemes is established by using the asymptotic equivalence method. This paper also discusses the bivariate tensor-product subdivision scheme for the surface modeling on the regular meshes. The numerical results they produce are very encouraging. In this context, the performance of our algorithms has been exposed by considering examples, which illustrate how the shape parameter and the control points are assigned to reproduce such analytic curves and surfaces using tensor-product notion.
引用
收藏
页码:149 / 162
页数:14
相关论文
共 50 条
  • [1] Mixed hyperbolic/trigonometric non-stationary subdivision scheme
    R. Fakhar
    A. Lamnii
    M. -Y. Nour
    A. Zidna
    Mathematical Sciences, 2022, 16 : 149 - 162
  • [2] A mixed hyperbolic/trigonometric non-stationary subdivision scheme for arbitrary topology meshes
    Barrera, Domingo
    Lamnii, Abdellah
    Nour, Mohamed-Yassir
    Zidna, Ahmed
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022,
  • [3] A non-stationary subdivision scheme for generalizing trigonometric spline surfaces to arbitrary meshes
    Jena, MK
    Shunmugaraj, P
    Das, PC
    COMPUTER AIDED GEOMETRIC DESIGN, 2003, 20 (02) : 61 - 77
  • [4] 6-Point Non-Stationary Subdivision Scheme by Hyperbolic B-Spline
    Bajwa, Asmat Naz
    Dehraj, Sanaullah
    Bari, Mehwish
    Aasoori, Sunny Kumar
    Memon, Muhammad
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2020, 20 (04): : 132 - 138
  • [5] Construction of Trigonometric Box Splines and the Associated Non-Stationary Subdivision Schemes
    Jena H.
    Jena M.K.
    International Journal of Applied and Computational Mathematics, 2021, 7 (4)
  • [6] Ternary three point non-stationary subdivision scheme
    Siddiqi, Shahid S.
    Younis, Muhammad
    Research Journal of Applied Sciences, Engineering and Technology, 2012, 4 (13) : 1875 - 1882
  • [7] A novel non-stationary subdivision scheme for geometric modeling
    Chen, FQ
    Ding, YD
    Liu, J
    Wei, DM
    FOURTH INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION TECHNOLOGY, PROCEEDINGS, 2004, : 748 - 752
  • [8] A Hybrid Non-Stationary Subdivision Scheme Based on Triangulation
    Jena H.
    Jena M.K.
    International Journal of Applied and Computational Mathematics, 2021, 7 (4)
  • [9] Mixed trigonometric and hyperbolic subdivision scheme with two tension and one shape parameters
    Fakhar, R.
    Lamnii, A.
    Nour, M. Y.
    Zidna, A.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2022, 99 (04) : 665 - 679
  • [10] Chaikin's perturbation subdivision scheme in non-stationary forms
    Salam, Wardat Us
    Siddiqi, Shahid S.
    Rehan, Kashif
    ALEXANDRIA ENGINEERING JOURNAL, 2016, 55 (03) : 2855 - 2862