FINITE ELEMENT APPROXIMATION OF A TIME-FRACTIONAL DIFFUSION PROBLEM FOR A DOMAIN WITH A RE-ENTRANT CORNER

被引:7
|
作者
Le, Kim Ngan [1 ]
Mclean, William [1 ]
Lamichhane, Bishnu [2 ]
机构
[1] Univ New South Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
[2] Univ Newcastle, Sch Math & Phys Sci, Callaghan, NSW 2308, Australia
来源
ANZIAM JOURNAL | 2017年 / 59卷 / 01期
关键词
local mesh refinement; non-smooth initial data; Laplace transformation; EQUATIONS;
D O I
10.1017/S1446181116000365
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An initial-boundary value problem for a time-fractional diffusion equation is discretized in space, using continuous piecewise-linear finite elements on a domain with a re-entrant corner. Known error bounds for the case of a convex domain break down, because the associated Poisson equation is no longer H-2-regular. In particular, the method is no longer second-order accurate if quasi-uniform triangulations are used. We prove that a suitable local mesh refinement about the re-entrant corner restores second-order convergence. In this way, we generalize known results for the classical heat equation.
引用
收藏
页码:61 / 82
页数:22
相关论文
共 50 条
  • [1] A finite element approximation for a class of Caputo time-fractional diffusion equations
    Ammi, Moulay Rchid Sidi
    Jamiai, Ismail
    Torres, Delfim F. M.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (05) : 1334 - 1344
  • [2] Superconvergence of a Finite Element Method for the Multi-term Time-Fractional Diffusion Problem
    Huang, Chaobao
    Stynes, Martin
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 82 (01)
  • [3] An α-robust finite element method for a multi-term time-fractional diffusion problem
    Huang, Chaobao
    Stynes, Martin
    Chen, Hu
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 389
  • [4] Superconvergence of a Finite Element Method for the Multi-term Time-Fractional Diffusion Problem
    Chaobao Huang
    Martin Stynes
    Journal of Scientific Computing, 2020, 82
  • [5] Galerkin finite element method for time-fractional stochastic diffusion equations
    Zou, Guang-an
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (04): : 4877 - 4898
  • [6] Two Mixed Finite Element Methods for Time-Fractional Diffusion Equations
    Yanmin Zhao
    Pan Chen
    Weiping Bu
    Xiangtao Liu
    Yifa Tang
    Journal of Scientific Computing, 2017, 70 : 407 - 428
  • [7] Finite element analysis for coupled time-fractional nonlinear diffusion system
    Kumar, Dileep
    Chaudhary, Sudhakar
    Kumar, V. V. K. Srinivas
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (06) : 1919 - 1936
  • [8] Two Mixed Finite Element Methods for Time-Fractional Diffusion Equations
    Zhao, Yanmin
    Chen, Pan
    Bu, Weiping
    Liu, Xiangtao
    Tang, Yifa
    JOURNAL OF SCIENTIFIC COMPUTING, 2017, 70 (01) : 407 - 428
  • [9] Galerkin finite element method for time-fractional stochastic diffusion equations
    Guang-an Zou
    Computational and Applied Mathematics, 2018, 37 : 4877 - 4898
  • [10] Superconvergence analysis of finite element method for time-fractional Thermistor problem
    Shi, Dongyang
    Yang, Huaijun
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 323 : 31 - 42