Activity recognition using a supervised non-parametric hierarchical HMM

被引:35
|
作者
Raman, Natraj [1 ]
Maybank, S. J. [1 ]
机构
[1] Univ London, Dept Comp Sci & Informat Syst, London WC1E 7HU, England
关键词
Activity classification; Depth image sequences; Hierarchical HMM; HDP; Inference; Multinomial logistic regression;
D O I
10.1016/j.neucom.2016.03.024
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The problem of classifying human activities occurring in depth image sequences is addressed. The 3D joint positions of a human skeleton and the local depth image pattern around these joint positions define the features. A two level hierarchical Hidden Markov Model (H-HMM), with independent Markov chains for the joint positions and depth image pattern, is used to model the features. The states corresponding to the H-HMM bottom level characterize the granular poses while the top level characterizes the coarser actions associated with the activities. Further, the H-HMM is based on a Hierarchical Dirichlet Process (HDP), and is fully non-parametric with the number of pose and action states inferred automatically from data. This is a significant advantage over classical HMM and its extensions. In order to perform classification, the relationships between the actions and the activity labels are captured using multinomial logistic regression. The proposed inference procedure ensures alignment of actions from activities with similar labels. Our construction enables information sharing, allows incorporation of unlabelled examples and provides a flexible factorized representation to include multiple data channels. Experiments with multiple real world datasets show the efficacy of our classification approach. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:163 / 177
页数:15
相关论文
共 50 条
  • [41] A Non-Parametric Texture Descriptor for Polarimetric SAR Data with Applications to Supervised Classification
    Jaeger, Marc
    Reigber, Andreas
    Hellwich, Olaf
    10TH EUROPEAN CONFERENCE ON SYNTHETIC APERTURE RADAR (EUSAR 2014), 2014,
  • [42] NON-PARAMETRIC STRINGS
    GAMBINI, R
    TRIAS, A
    PHYSICS LETTERS B, 1988, 200 (03) : 280 - 284
  • [43] Non-parametric Econometrics
    Leong, Chee Kian
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2012, 175 : 1072 - 1072
  • [44] Non-parametric Semi-supervised Learning by Bayesian Label Distribution Propagation
    Gottcke, Jonatan Moller Nuutinen
    Zimek, Arthur
    Campello, Ricardo J. G. B.
    SIMILARITY SEARCH AND APPLICATIONS, SISAP 2021, 2021, 13058 : 118 - 132
  • [45] Non-Parametric Parametricity
    Neis, Georg
    Dreyer, Derek
    Rossberg, Andreas
    ACM SIGPLAN NOTICES, 2009, 44 (8-9) : 135 - 148
  • [46] Non-Parametric Parametricity
    Nei, Georg
    Dreyer, Derek
    Rossberg, Andreas
    ICFP'09: PROCEEDINGS OF THE 2009 ACM SIGPLAN INTERNATIONAL CONFERENCE ON FUNCTIONAL PROGRAMMING, 2009, : 135 - 148
  • [47] Non-parametric parametricity
    Neis, Georg
    Dreyer, Derek
    Rossberg, Andreas
    JOURNAL OF FUNCTIONAL PROGRAMMING, 2011, 21 : 497 - 562
  • [48] Parametric and Non-parametric Encompassing Procedures
    Bontemps, Christophe
    Florens, Jean-Pierre
    Richard, Jean-Francois
    OXFORD BULLETIN OF ECONOMICS AND STATISTICS, 2008, 70 : 751 - 780
  • [49] Online Maneuver Recognition and Multimodal Trajectory Prediction for Intersection Assistance using Non-parametric Regression
    Quan Tran
    Firl, Jonas
    2014 IEEE INTELLIGENT VEHICLES SYMPOSIUM PROCEEDINGS, 2014, : 924 - 929
  • [50] MODELLING HAZARD OF BECOMING ALCOHOLIC USING PARAMETRIC AND NON-PARAMETRIC METHODS
    Muriuki, George Mwangi
    Mutiso, John M.
    Kosgei, Mathew K.
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2021, 17 (02): : 545 - 556