Online Maneuver Recognition and Multimodal Trajectory Prediction for Intersection Assistance using Non-parametric Regression

被引:0
|
作者
Quan Tran [1 ]
Firl, Jonas [2 ]
机构
[1] Karlsruhe Inst Technol, Dept Measurement & Control Syst, D-76131 Karlsruhe, Germany
[2] Daimler AG, D-71059 Boblingeny, Germany
关键词
Intersection assistance; maneuver recognition; trajectory prediction; Gaussian process regression; Monte Carlo method; particle filters;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Maneuver recognition and trajectory prediction of moving vehicles are two important and challenging tasks of advanced driver assistance systems (ADAS) at urban intersections. This paper presents a continuing work to handle these two problems in a consistent framework using non-parametric regression models. We provide a feature normalization scheme and present a strategy for constructing three-dimensional Gaussian process regression models from two-dimensional trajectory patterns These models can capture spatio-temporal characteristics of traffic situations. Given a new, partially observed and unlabeled trajectory, the maneuver can be recognized online by comparing the likelihoods of the observation data for each individual regression model. Furthermore, we take advantage of our representation for trajectory prediction. Because predicting possible trajectories at urban intersection involves obvious multimodalities and non-linearities, we employ the Monte Carlo method to handle these difficulties. This approach allows the incremental prediction of possible trajectories in situations where unimodal estimators such as Kalman Filters would not work well. The proposed framework is evaluated experimentally in urban intersection scenarios using real-world data.
引用
收藏
页码:924 / 929
页数:6
相关论文
共 50 条
  • [1] Unravelling uncertainty in trajectory prediction using a non-parametric approach
    Li, Guopeng
    Li, Zirui
    Knoop, Victor L.
    van Lint, Hans
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2024, 163
  • [2] Performance Prediction for RNA Design Using Parametric and Non-Parametric Regression Models
    Dai, Denny C.
    Wiese, Kay C.
    CIBCB: 2009 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, 2009, : 16 - 23
  • [3] Uncertain Trajectory Prediction Method Using Non-parametric Density Estimation
    Cheng Y.
    Chi R.-H.
    Huang S.-B.
    Lv T.-Y.
    Zidonghua Xuebao/Acta Automatica Sinica, 2019, 45 (04): : 787 - 798
  • [4] Distribution-free prediction bands for non-parametric regression
    Lei, Jing
    Wasserman, Larry
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2014, 76 (01) : 71 - 96
  • [5] Deep Learning with Non-Parametric Regression Model for Traffic Flow Prediction
    Arif, Muhammad
    Wang, Guojun
    Chen, Shuhong
    2018 16TH IEEE INT CONF ON DEPENDABLE, AUTONOM AND SECURE COMP, 16TH IEEE INT CONF ON PERVAS INTELLIGENCE AND COMP, 4TH IEEE INT CONF ON BIG DATA INTELLIGENCE AND COMP, 3RD IEEE CYBER SCI AND TECHNOL CONGRESS (DASC/PICOM/DATACOM/CYBERSCITECH), 2018, : 681 - 688
  • [6] PREDICTION USING NON-PARAMETRIC TECHNIQUES - SOME COMPARISONS
    ACAR, BS
    PETTITT, AN
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1985, 21 (02) : 117 - 134
  • [7] Using Non-Parametric Regression to Model Dormancy Requirements in Almonds
    Jarvis-Shean, K.
    Da Silva, D.
    Willits, N.
    DeJong, T. M.
    IX INTERNATIONAL SYMPOSIUM ON MODELLING IN FRUIT RESEARCH AND ORCHARD MANAGEMENT, 2015, 1068 : 133 - 140
  • [8] Cost modeling of spatial operators using non-parametric regression
    Jiang, Songtao
    Lee, Byung Suk
    He, Zhen
    INFORMATION SCIENCES, 2007, 177 (02) : 607 - 631
  • [9] Non-parametric Regression Tests Using Dimension Reduction Techniques
    Haag, Berthold R.
    SCANDINAVIAN JOURNAL OF STATISTICS, 2008, 35 (04) : 719 - 738
  • [10] Prediction error estimation under Bregman divergence for non-parametric regression and classification
    Zhang, Chunming
    SCANDINAVIAN JOURNAL OF STATISTICS, 2008, 35 (03) : 496 - 523