Online Maneuver Recognition and Multimodal Trajectory Prediction for Intersection Assistance using Non-parametric Regression

被引:0
|
作者
Quan Tran [1 ]
Firl, Jonas [2 ]
机构
[1] Karlsruhe Inst Technol, Dept Measurement & Control Syst, D-76131 Karlsruhe, Germany
[2] Daimler AG, D-71059 Boblingeny, Germany
关键词
Intersection assistance; maneuver recognition; trajectory prediction; Gaussian process regression; Monte Carlo method; particle filters;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Maneuver recognition and trajectory prediction of moving vehicles are two important and challenging tasks of advanced driver assistance systems (ADAS) at urban intersections. This paper presents a continuing work to handle these two problems in a consistent framework using non-parametric regression models. We provide a feature normalization scheme and present a strategy for constructing three-dimensional Gaussian process regression models from two-dimensional trajectory patterns These models can capture spatio-temporal characteristics of traffic situations. Given a new, partially observed and unlabeled trajectory, the maneuver can be recognized online by comparing the likelihoods of the observation data for each individual regression model. Furthermore, we take advantage of our representation for trajectory prediction. Because predicting possible trajectories at urban intersection involves obvious multimodalities and non-linearities, we employ the Monte Carlo method to handle these difficulties. This approach allows the incremental prediction of possible trajectories in situations where unimodal estimators such as Kalman Filters would not work well. The proposed framework is evaluated experimentally in urban intersection scenarios using real-world data.
引用
收藏
页码:924 / 929
页数:6
相关论文
共 50 条
  • [41] Resolution properties of non-parametric regression sinogram smoothing using an explicit Poisson model
    La Rivière, PJ
    Pan, XC
    1999 IEEE NUCLEAR SCIENCE SYMPOSIUM - CONFERENCE RECORD, VOLS 1-3, 1999, : 1657 - 1661
  • [42] Estimation of population size from biased samples using non-parametric binary regression
    Chen, SX
    Lloyd, CJ
    STATISTICA SINICA, 2002, 12 (02) : 505 - 518
  • [43] Integrative genetic risk prediction using non-parametric empirical Bayes classification
    Zhao, Sihai Dave
    BIOMETRICS, 2017, 73 (02) : 582 - 592
  • [44] Wind power forecasting in distribution networks using non-parametric models and regression trees
    Pavlos Nikolaidis
    Discover Energy, 2 (1):
  • [45] Non-parametric prediction of diameter distributions using airborne laser scanner data
    Maltamo, Matti
    Naesset, Erik
    Bollandsas, Ole M.
    Gobakken, Terje
    Packalen, Petteri
    SCANDINAVIAN JOURNAL OF FOREST RESEARCH, 2009, 24 (06) : 541 - 553
  • [46] CO atmospheric concentration modeling using non-parametric regression with non-homogeneous variability bands
    Florez, Alvaro J.
    INGENIERIA Y COMPETITIVIDAD, 2014, 16 (01): : 259 - 267
  • [47] Prediction of California Bearing Ratio from Index Properties of Soils Using Parametric and Non-parametric Models
    Gonzalez Farias, Isabel
    Araujo, William
    Ruiz, Gaby
    GEOTECHNICAL AND GEOLOGICAL ENGINEERING, 2018, 36 (06) : 3485 - 3498
  • [48] Determination of the order of stochastically linear dynamic systems by using non-parametric estimation of a regression function
    Medvedev, A., V
    Raskina, A., V
    Chzhan, E. A.
    Korneeva, A. A.
    Videnin, C. A.
    INTERNATIONAL SCIENTIFIC CONFERENCE ON APPLIED PHYSICS, INFORMATION TECHNOLOGIES AND ENGINEERING (APITECH-2019), 2019, 1399
  • [49] Multi-generation genomic prediction of maize yield using parametric and non-parametric sparse selection indices
    Marco Lopez-Cruz
    Yoseph Beyene
    Manje Gowda
    Jose Crossa
    Paulino Pérez-Rodríguez
    Gustavo de los Campos
    Heredity, 2021, 127 : 423 - 432
  • [50] Multi-generation genomic prediction of maize yield using parametric and non-parametric sparse selection indices
    Lopez-Cruz, Marco
    Beyene, Yoseph
    Gowda, Manje
    Crossa, Jose
    Perez-Rodriguez, Paulino
    de los Campos, Gustavo
    HEREDITY, 2021, 127 (05) : 423 - 432