AggregationNet: Identifying Multiple Changes Based on Convolutional Neural Network in Bitemporal Optical Remote Sensing Images

被引:2
|
作者
Ye, Qiankun [1 ]
Lu, Xiankai [1 ]
Huo, Hong [1 ]
Wan, Lihong [1 ]
Guo, Yiyou [1 ]
Fang, Tao [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Elect Informat & Elect Engn, Dept Automat, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Multiple change detection; Remote sensing; Aggregation network; REPRESENTATION;
D O I
10.1007/978-3-030-16142-2_29
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The detection of multiple changes (i.e., different change types) in bitemporal remote sensing images is a challenging task. Numerous methods focus on detecting the changing location while the detailed "from-to" change types are neglected. This paper presents a supervised framework named AggregationNet to identify the specific "from-to" change types. This AggregationNet takes two image patches as input and directly output the change types. The AggregationNet comprises a feature extraction part and a feature aggregation part. Deep "from-to" features are extracted by the feature extraction part which is a two-branch convolutional neural network. The feature aggregation part is adopted to explore the temporal correlation of the bitemporal image patches. A one-hot label map is proposed to facilitate AggregationNet. One element in the label map is set to 1 and others are set to 0. Different change types are represented by different locations of 1 in the one-hot label map. To verify the effectiveness of the proposed framework, we perform experiments on general optical remote sensing image classification datasets as well as change detection dataset. Extensive experimental results demonstrate the effectiveness of the proposed method.
引用
收藏
页码:375 / 386
页数:12
相关论文
共 50 条
  • [31] Object Detectionin of Remote Sensing Images Based on Convolutional Neural Networks
    Ou Pan
    Zhang Zheng
    Lu Kui
    Liu Zeyang
    LASER & OPTOELECTRONICS PROGRESS, 2019, 56 (05)
  • [32] Multiple Object Extraction of Remote Sensing Images Based on Convolutional Neural Networks and Support Vector Machines
    Feng, Tao-xing
    Wang, Wei-yu
    Qian, Xiao-meng
    Zhang, Zhan-hong
    Liu, Hui
    Xing, Ying
    Yang, Bin
    2018 INTERNATIONAL CONFERENCE ON COMMUNICATION, NETWORK AND ARTIFICIAL INTELLIGENCE (CNAI 2018), 2018, : 352 - 362
  • [33] CGC-NET: Aircraft Detection in Remote Sensing Images Based on Lightweight Convolutional Neural Network
    Wang, Ting
    Zeng, Xiaodong
    Cao, Changqing
    Li, Wei
    Feng, Zhejun
    Wu, Jin
    Yan, Xu
    Wu, Zengyan
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 2805 - 2815
  • [34] Optimal deep convolutional neural network based crop classification model on multispectral remote sensing images
    Chamundeeswari, G.
    Srinivasan, S.
    Bharathi, S. Prasanna
    Priya, P.
    Kannammal, G. Rajendra
    Rajendran, Sasikumar
    MICROPROCESSORS AND MICROSYSTEMS, 2022, 94
  • [35] Compression of remote sensing images based on ridgelet and neural network
    Yang, SY
    Wang, M
    Jiao, LC
    ADVANCES IN NEURAL NETWORKS - ISNN 2005, PT 2, PROCEEDINGS, 2005, 3497 : 723 - 729
  • [36] Multisource Remote Sensing Data Classification Based on Convolutional Neural Network
    Xu, Xiaodong
    Li, Wei
    Ran, Qiong
    Du, Qian
    Gao, Lianru
    Zhang, Bing
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (02): : 937 - 949
  • [37] Road Detection of Remote Sensing Image Based on Convolutional Neural Network
    Zhu, Yuting
    Yan, Jingwen
    Wang, Cong
    Zhou, Yiqing
    IMAGE AND GRAPHICS, ICIG 2019, PT II, 2019, 11902 : 106 - 118
  • [38] Hyperspectral Remote Sensing Image Classification Based on Convolutional Neural Network
    Dai, Xiangyang
    Xue, Wei
    2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 10373 - 10377
  • [39] Remote Sensing Image Object Recognition Based on Convolutional Neural Network
    Zhen, Yumei
    Liu, Huanyu
    Li, Junbao
    Hu, Cong
    Pan, Jeng-Shyang
    PROCEEDINGS FIRST INTERNATIONAL CONFERENCE ON ELECTRONICS INSTRUMENTATION & INFORMATION SYSTEMS (EIIS 2017), 2017, : 814 - 817
  • [40] WEED CLASSIFICATION IN HYPERSPECTRAL REMOTE SENSING IMAGES VIA DEEP CONVOLUTIONAL NEURAL NETWORK
    Farooq, Adnan
    Hu, Jiankun
    Jia, Xiuping
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 3816 - 3819