AggregationNet: Identifying Multiple Changes Based on Convolutional Neural Network in Bitemporal Optical Remote Sensing Images

被引:2
|
作者
Ye, Qiankun [1 ]
Lu, Xiankai [1 ]
Huo, Hong [1 ]
Wan, Lihong [1 ]
Guo, Yiyou [1 ]
Fang, Tao [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Elect Informat & Elect Engn, Dept Automat, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Multiple change detection; Remote sensing; Aggregation network; REPRESENTATION;
D O I
10.1007/978-3-030-16142-2_29
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The detection of multiple changes (i.e., different change types) in bitemporal remote sensing images is a challenging task. Numerous methods focus on detecting the changing location while the detailed "from-to" change types are neglected. This paper presents a supervised framework named AggregationNet to identify the specific "from-to" change types. This AggregationNet takes two image patches as input and directly output the change types. The AggregationNet comprises a feature extraction part and a feature aggregation part. Deep "from-to" features are extracted by the feature extraction part which is a two-branch convolutional neural network. The feature aggregation part is adopted to explore the temporal correlation of the bitemporal image patches. A one-hot label map is proposed to facilitate AggregationNet. One element in the label map is set to 1 and others are set to 0. Different change types are represented by different locations of 1 in the one-hot label map. To verify the effectiveness of the proposed framework, we perform experiments on general optical remote sensing image classification datasets as well as change detection dataset. Extensive experimental results demonstrate the effectiveness of the proposed method.
引用
收藏
页码:375 / 386
页数:12
相关论文
共 50 条
  • [11] Ship detection in optical remote sensing images based on deep convolutional neural networks
    Yao, Yuan
    Jiang, Zhiguo
    Zhang, Haopeng
    Zhao, Danpei
    Cai, Bowen
    JOURNAL OF APPLIED REMOTE SENSING, 2017, 11
  • [12] Detection of Small Ships in Remote Sensing Images based on Deep Convolutional Neural Network
    Shi, Tingchao
    Liu, Mingyong
    Niu, Yun
    You, Lianggen
    Xuan, Liwei
    Wang, Cong
    GLOBAL OCEANS 2020: SINGAPORE - U.S. GULF COAST, 2020,
  • [13] Aircraft Detection Method Based on Deep Convolutional Neural Network for Remote Sensing Images
    Guo Zhi
    Song Ping
    Zhang Yi
    Yan Menglong
    Sun Xian
    Sun Hao
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2018, 40 (11) : 2684 - 2690
  • [14] Dehazing for Multispectral Remote Sensing Images Based on a Convolutional Neural Network With the Residual Architecture
    Qin, Manjun
    Xie, Fengying
    Li, Wei
    Shi, Zhenwei
    Zhang, Haopeng
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2018, 11 (05) : 1645 - 1655
  • [15] Super-resolution reconstruction of remote sensing images based on convolutional neural network
    Tian, Yu
    Jia, Rui-Sheng
    Xu, Shao-Hua
    Hua, Rong
    Deng, Meng-Di
    JOURNAL OF APPLIED REMOTE SENSING, 2019, 13 (04)
  • [16] Object Detection in Optical Remote Sensing Images Based on Transfer Learning Convolutional Neural Networks
    Yan, Zhenguo
    Song, Xin
    Zhong, Hanyang
    Zhu, Xiaozhou
    PROCEEDINGS OF 2018 5TH IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND INTELLIGENCE SYSTEMS (CCIS), 2018, : 935 - 942
  • [17] Simultaneous Cloud Detection and Removal From Bitemporal Remote Sensing Images Using Cascade Convolutional Neural Networks
    Ji, Shunping
    Dai, Peiyu
    Lu, Meng
    Zhang, Yongjun
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (01): : 732 - 748
  • [18] Cloud Detection in Remote Sensing Images Based on Multiscale Features-Convolutional Neural Network
    Shao, Zhenfeng
    Pan, Yin
    Diao, Chunyuan
    Cai, Jiajun
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (06): : 4062 - 4076
  • [19] Research on Airplane and Ship Detection of Aerial Remote Sensing Images Based on Convolutional Neural Network
    Cao, Changqing
    Wu, Jin
    Zeng, Xiaodong
    Feng, Zhejun
    Wang, Ting
    Yan, Xu
    Wu, Zengyan
    Wu, Qifan
    Huang, Ziqiang
    SENSORS, 2020, 20 (17) : 1 - 16
  • [20] An Aircraft Target Detection Method Based on Regional Convolutional Neural Network for Remote Sensing Images
    Wang, Bing
    Zhou, Yan
    Zhang, Huainian
    Wang, Ning
    PROCEEDINGS OF 2019 IEEE 9TH INTERNATIONAL CONFERENCE ON ELECTRONICS INFORMATION AND EMERGENCY COMMUNICATION (ICEIEC 2019), 2019, : 469 - 473