Challenges in representation learning: A report on three machine learning contests

被引:332
|
作者
Goodfellow, Ian J. [1 ]
Erhan, Dumitru [2 ]
Carrier, Pierre Luc [1 ]
Courville, Aaron [1 ]
Mirza, Mehdi [1 ]
Hamner, Ben [3 ]
Cukierski, Will [3 ]
Tang, Yichuan [4 ]
Thaler, David
Lee, Dong-Hyun [5 ]
Zhou, Yingbo [6 ]
Ramaiah, Chetan [6 ]
Feng, Fangxiang [7 ]
Li, Ruifan [7 ]
Wang, Xiaojie [7 ]
Athanasakis, Dimitris [8 ]
Shawe-Taylor, John [8 ]
Milakov, Maxim
Park, John
Ionescu, Radu [9 ]
Popescu, Marius [9 ]
Grozea, Cristian [10 ]
Bergstra, James [11 ]
Xie, Jingjing [7 ]
Romaszko, Lukasz
Xu, Bing [7 ]
Chuang, Zhang [7 ]
Bengio, Yoshua [1 ]
机构
[1] Univ Montreal, Montreal, PQ H3T 1N8, Canada
[2] Google, Venice, CA 90291 USA
[3] Kaggle, Chicago, IL USA
[4] Univ Toronto, Toronto, ON M5S 1A1, Canada
[5] Nangman Comp, Seoul, South Korea
[6] SUNY Buffalo, Buffalo, NY 14260 USA
[7] Beijing Univ Posts & Telecommun, Beijing, Peoples R China
[8] UCL, London WC1E 6BT, England
[9] Univ Bucharest, Bucharest, Romania
[10] VICOM, Singapore, Singapore
[11] Univ Waterloo, Waterloo, ON N2L 3G1, Canada
关键词
Representation learning; Competition; Dataset;
D O I
10.1016/j.neunet.2014.09.005
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The ICML 2013 Workshop on Challenges in Representation Learning(1) focused on three challenges: the black box learning challenge, the facial expression recognition challenge, and the multimodal learning challenge. We describe the datasets created for these challenges and summarize the results of the competitions. We provide suggestions for organizers of future challenges and some comments on what kind of knowledge can be gained from machine learning competitions. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:59 / 63
页数:5
相关论文
共 50 条
  • [31] The Challenges of Machine Learning and Their Economic Implications
    Borrellas, Pol
    Unceta, Irene
    ENTROPY, 2021, 23 (03) : 1 - 23
  • [32] The Challenges of Machine Learning: A Critical Review
    Barbierato, Enrico
    Gatti, Alice
    ELECTRONICS, 2024, 13 (02)
  • [33] Automated Machine Learning: Prospects and Challenges
    Vaccaro, Lorenzo
    Sansonetti, Giuseppe
    Micarelli, Alessandro
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS, ICCSA 2020, PART IV, 2020, 12252 : 119 - 134
  • [34] Implementing machine learning: chances and challenges
    Heizmann, Michael
    Braun, Alexander
    Glitzner, Markus
    Gunther, Matthias
    Hasna, Gunther
    Kluver, Christina
    Krooss, Jakob
    Marquardt, Erik
    Overdick, Michael
    Ulrich, Markus
    AT-AUTOMATISIERUNGSTECHNIK, 2022, 70 (01) : 90 - 101
  • [35] Challenges of Machine Learning for Living Machines
    Puigbo, Jordi-Ysard
    Arsiwalla, Xerxes D.
    Verschure, Paul F. M. J.
    BIOMIMETIC AND BIOHYBRID SYSTEMS, 2018, 10928 : 382 - 386
  • [36] Challenges and Opportunities in Machine Learning for Geometry
    Magdalena-Benedicto, Rafael
    Perez-Diaz, Sonia
    Costa-Roig, Adria
    MATHEMATICS, 2023, 11 (11)
  • [37] Hardware for Machine Learning: Challenges and Opportunities
    Sze, Vivienne
    Then, Yu-Hsin
    Emer, Joel
    Suleiman, Amr
    Zhang, Zhengdong
    2018 IEEE CUSTOM INTEGRATED CIRCUITS CONFERENCE (CICC), 2018,
  • [38] Machine Learning in tunnelling – Capabilities and challenges
    Marcher T.
    Erharter G.H.
    Winkler M.
    Geomechanik und Tunnelbau, 2020, 13 (02): : 191 - 198
  • [39] Challenges and Opportunities in Applied Machine Learning
    Brodley, Carla E.
    Rebbapragada, Umaa
    Small, Kevin
    Wallace, Byron C.
    AI MAGAZINE, 2012, 33 (01) : 11 - 24
  • [40] Conceptual challenges for interpretable machine learning
    Watson, David S.
    SYNTHESE, 2022, 200 (01)