Challenges in representation learning: A report on three machine learning contests

被引:332
|
作者
Goodfellow, Ian J. [1 ]
Erhan, Dumitru [2 ]
Carrier, Pierre Luc [1 ]
Courville, Aaron [1 ]
Mirza, Mehdi [1 ]
Hamner, Ben [3 ]
Cukierski, Will [3 ]
Tang, Yichuan [4 ]
Thaler, David
Lee, Dong-Hyun [5 ]
Zhou, Yingbo [6 ]
Ramaiah, Chetan [6 ]
Feng, Fangxiang [7 ]
Li, Ruifan [7 ]
Wang, Xiaojie [7 ]
Athanasakis, Dimitris [8 ]
Shawe-Taylor, John [8 ]
Milakov, Maxim
Park, John
Ionescu, Radu [9 ]
Popescu, Marius [9 ]
Grozea, Cristian [10 ]
Bergstra, James [11 ]
Xie, Jingjing [7 ]
Romaszko, Lukasz
Xu, Bing [7 ]
Chuang, Zhang [7 ]
Bengio, Yoshua [1 ]
机构
[1] Univ Montreal, Montreal, PQ H3T 1N8, Canada
[2] Google, Venice, CA 90291 USA
[3] Kaggle, Chicago, IL USA
[4] Univ Toronto, Toronto, ON M5S 1A1, Canada
[5] Nangman Comp, Seoul, South Korea
[6] SUNY Buffalo, Buffalo, NY 14260 USA
[7] Beijing Univ Posts & Telecommun, Beijing, Peoples R China
[8] UCL, London WC1E 6BT, England
[9] Univ Bucharest, Bucharest, Romania
[10] VICOM, Singapore, Singapore
[11] Univ Waterloo, Waterloo, ON N2L 3G1, Canada
关键词
Representation learning; Competition; Dataset;
D O I
10.1016/j.neunet.2014.09.005
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The ICML 2013 Workshop on Challenges in Representation Learning(1) focused on three challenges: the black box learning challenge, the facial expression recognition challenge, and the multimodal learning challenge. We describe the datasets created for these challenges and summarize the results of the competitions. We provide suggestions for organizers of future challenges and some comments on what kind of knowledge can be gained from machine learning competitions. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:59 / 63
页数:5
相关论文
共 50 条
  • [21] Ontology learning from text: Tasks and challenges for machine learning
    Kietz, JU
    INTELLIGENT INFORMATION PROCESSING AND WEB MINING, 2003, : 453 - 455
  • [22] Machine learning in/for blockchain: Future and challenges
    Chen, Fang
    Wan, Hong
    Cai, Hua
    Cheng, Guang
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2021, 49 (04): : 1364 - 1382
  • [23] Challenges and opportunities in quantum machine learning
    M. Cerezo
    Guillaume Verdon
    Hsin-Yuan Huang
    Lukasz Cincio
    Patrick J. Coles
    Nature Computational Science, 2022, 2 : 567 - 576
  • [24] Challenges and opportunities in quantum machine learning
    Cerezo, M.
    Verdon, Guillaume
    Huang, Hsin-Yuan
    Cincio, Lukasz
    Coles, Patrick J.
    NATURE COMPUTATIONAL SCIENCE, 2022, 2 (09): : 567 - 576
  • [25] Machine learning challenges in theoretical HEP
    Carrazza, Stefano
    18TH INTERNATIONAL WORKSHOP ON ADVANCED COMPUTING AND ANALYSIS TECHNIQUES IN PHYSICS RESEARCH (ACAT2017), 2018, 1085
  • [26] Conceptual challenges for interpretable machine learning
    David S. Watson
    Synthese, 2022, 200
  • [27] Machine learning in orthodontics: Challenges and perspectives
    Liu, Jialing
    Chen, Ye
    Li, Shihao
    Zhao, Zhihe
    Wu, Zhihong
    ADVANCES IN CLINICAL AND EXPERIMENTAL MEDICINE, 2021, 30 (10): : 1065 - 1074
  • [28] Machine Learning for the Geosciences: Challenges and Opportunities
    Karpatne, Anuj
    Ebert-Uphoff, Imme
    Ravela, Sai
    Babaie, Hassan Ali
    Kumar, Vipin
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2019, 31 (08) : 1544 - 1554
  • [29] Machine Learning Challenges in Pharmacogenomic Research
    Wei, Wei-Qi
    Zhao, Juan
    Roden, Dan M.
    Peterson, Josh F.
    CLINICAL PHARMACOLOGY & THERAPEUTICS, 2021, 110 (03) : 552 - 554
  • [30] Machine learning in neuroimaging: Progress and challenges
    Davatzikos, Christos
    NEUROIMAGE, 2019, 197 : 652 - 656