Challenges in representation learning: A report on three machine learning contests

被引:332
|
作者
Goodfellow, Ian J. [1 ]
Erhan, Dumitru [2 ]
Carrier, Pierre Luc [1 ]
Courville, Aaron [1 ]
Mirza, Mehdi [1 ]
Hamner, Ben [3 ]
Cukierski, Will [3 ]
Tang, Yichuan [4 ]
Thaler, David
Lee, Dong-Hyun [5 ]
Zhou, Yingbo [6 ]
Ramaiah, Chetan [6 ]
Feng, Fangxiang [7 ]
Li, Ruifan [7 ]
Wang, Xiaojie [7 ]
Athanasakis, Dimitris [8 ]
Shawe-Taylor, John [8 ]
Milakov, Maxim
Park, John
Ionescu, Radu [9 ]
Popescu, Marius [9 ]
Grozea, Cristian [10 ]
Bergstra, James [11 ]
Xie, Jingjing [7 ]
Romaszko, Lukasz
Xu, Bing [7 ]
Chuang, Zhang [7 ]
Bengio, Yoshua [1 ]
机构
[1] Univ Montreal, Montreal, PQ H3T 1N8, Canada
[2] Google, Venice, CA 90291 USA
[3] Kaggle, Chicago, IL USA
[4] Univ Toronto, Toronto, ON M5S 1A1, Canada
[5] Nangman Comp, Seoul, South Korea
[6] SUNY Buffalo, Buffalo, NY 14260 USA
[7] Beijing Univ Posts & Telecommun, Beijing, Peoples R China
[8] UCL, London WC1E 6BT, England
[9] Univ Bucharest, Bucharest, Romania
[10] VICOM, Singapore, Singapore
[11] Univ Waterloo, Waterloo, ON N2L 3G1, Canada
关键词
Representation learning; Competition; Dataset;
D O I
10.1016/j.neunet.2014.09.005
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The ICML 2013 Workshop on Challenges in Representation Learning(1) focused on three challenges: the black box learning challenge, the facial expression recognition challenge, and the multimodal learning challenge. We describe the datasets created for these challenges and summarize the results of the competitions. We provide suggestions for organizers of future challenges and some comments on what kind of knowledge can be gained from machine learning competitions. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:59 / 63
页数:5
相关论文
共 50 条
  • [1] Neuron Learning Machine for Representation Learning
    Liu, Jia
    Gong, Maoguo
    Miao, Qiguang
    THIRTY-FIRST AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 4961 - 4962
  • [2] Representation change in machine learning
    Saitta, L
    AI COMMUNICATIONS, 1996, 9 (01) : 14 - 20
  • [3] Challenges in Machine Learning Application Development: An Industrial Experience Report
    Rahman, Md Saidur
    Khomh, Foutse
    Rivera, Emilio
    Gueheneuc, Yann-Gael
    Lehnert, Bernd
    2022 IEEE/ACM 1ST INTERNATIONAL WORKSHOP ON SOFTWARE ENGINEERING FOR RESPONSIBLE ARTIFICIAL INTELLIGENCE (SE4RAI 2022), 2022, : 21 - 28
  • [4] Hierarchical Extreme Learning Machine for Unsupervised Representation Learning
    Zhu, Wentao
    Miao, Jun
    Qing, Laiyun
    Huang, Guang-Bin
    2015 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2015,
  • [5] Challenges in translational machine learning
    Artuur Couckuyt
    Ruth Seurinck
    Annelies Emmaneel
    Katrien Quintelier
    David Novak
    Sofie Van Gassen
    Yvan Saeys
    Human Genetics, 2022, 141 : 1451 - 1466
  • [6] Challenges in translational machine learning
    Couckuyt, Artuur
    Seurinck, Ruth
    Emmaneel, Annelies
    Quintelier, Katrien
    Novak, David
    Van Gassen, Sofie
    Saeys, Yvan
    HUMAN GENETICS, 2022, 141 (09) : 1451 - 1466
  • [7] Challenges in statistical machine learning
    Lafferty, John
    Wasserman, Larry
    STATISTICA SINICA, 2006, 16 (02) : 307 - 321
  • [8] Exploiting an Oracle That Reports AUC Scores in Machine Learning Contests
    Whitehill, Jacob
    THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, : 1345 - 1351
  • [9] Ethical challenges of machine learning and deep learning algorithms
    Prabhu, Sanjay P.
    LANCET ONCOLOGY, 2019, 20 (05): : 621 - 622
  • [10] Meta-learning and the new challenges of machine learning
    Monteiro, Jose Pedro
    Ramos, Diogo
    Carneiro, Davide
    Duarte, Francisco
    Fernandes, Joao M.
    Novais, Paulo
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2021, 36 (11) : 6240 - 6272