Spectral Norm of Circulant-Type Matrices

被引:26
|
作者
Bose, Arup [1 ]
Hazra, Rajat Subhra [1 ]
Saha, Koushik [1 ]
机构
[1] Indian Stat Inst, Stat & Math Unit, Kolkata 700108, India
关键词
Large-dimensional random matrix; Eigenvalues; Toeplitz matrix; Hankel matrix; Circulant matrix; Symmetric circulant matrix; Reverse circulant matrix; k-circulant matrix; Spectral norm; Moving average process; Spectral density; Normal approximation; TOEPLITZ MATRICES; MAXIMUM; HANKEL;
D O I
10.1007/s10959-009-0257-z
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We first discuss the convergence in probability and in distribution of the spectral norm of scaled Toeplitz, circulant, reverse circulant, symmetric circulant, and a class of k-circulant matrices when the input sequence is independent and identically distributed with finite moments of suitable order and the dimension of the matrix tends to infinity. When the input sequence is a stationary two-sided moving average process of infinite order, it is difficult to derive the limiting distribution of the spectral norm, but if the eigenvalues are scaled by the spectral density, then the limits of the maximum of modulus of these scaled eigenvalues can be derived in most of the cases.
引用
收藏
页码:479 / 516
页数:38
相关论文
共 50 条