Spectral Norm of Circulant-Type Matrices

被引:26
|
作者
Bose, Arup [1 ]
Hazra, Rajat Subhra [1 ]
Saha, Koushik [1 ]
机构
[1] Indian Stat Inst, Stat & Math Unit, Kolkata 700108, India
关键词
Large-dimensional random matrix; Eigenvalues; Toeplitz matrix; Hankel matrix; Circulant matrix; Symmetric circulant matrix; Reverse circulant matrix; k-circulant matrix; Spectral norm; Moving average process; Spectral density; Normal approximation; TOEPLITZ MATRICES; MAXIMUM; HANKEL;
D O I
10.1007/s10959-009-0257-z
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We first discuss the convergence in probability and in distribution of the spectral norm of scaled Toeplitz, circulant, reverse circulant, symmetric circulant, and a class of k-circulant matrices when the input sequence is independent and identically distributed with finite moments of suitable order and the dimension of the matrix tends to infinity. When the input sequence is a stationary two-sided moving average process of infinite order, it is difficult to derive the limiting distribution of the spectral norm, but if the eigenvalues are scaled by the spectral density, then the limits of the maximum of modulus of these scaled eigenvalues can be derived in most of the cases.
引用
收藏
页码:479 / 516
页数:38
相关论文
共 50 条
  • [21] Norm estimates of ω-circulant operator matrices and isomorphic operators for ω-circulant algebra
    ZhaoLin Jiang
    TingTing Xu
    Science China Mathematics, 2016, 59 : 351 - 366
  • [22] Norm estimates of ω-circulant operator matrices and isomorphic operators for ω-circulant algebra
    Jiang ZhaoLin
    Xu TingTing
    SCIENCE CHINA-MATHEMATICS, 2016, 59 (02) : 351 - 366
  • [23] The upper bound estimation on the spectral norm of r-circulant matrices with the Fibonacci and Lucas numbers
    Chengyuan He
    Jiangming Ma
    Kunpeng Zhang
    Zhenghua Wang
    Journal of Inequalities and Applications, 2015
  • [24] The upper bound estimation on the spectral norm of r-circulant matrices with the Fibonacci and Lucas numbers
    He, Chengyuan
    Ma, Jiangming
    Zhang, Kunpeng
    Wang, Zhenghua
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [25] Spectral distribution of symmetrized circulant matrices
    Bourget, Alain
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2022, 65 (02): : 431 - 446
  • [26] Spectral decomposition of real circulant matrices
    Karner, H
    Schneid, J
    Ueberhuber, CW
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 367 : 301 - 311
  • [27] Norm Equalities and Inequalities for Three Circulant Operator Matrices
    Zhao Lin JIANG
    Yun Cheng QIAO
    Shu Dong WANG
    Acta Mathematica Sinica,English Series, 2017, (04) : 571 - 590
  • [28] Norm equalities and inequalities for three circulant operator matrices
    Zhao Lin Jiang
    Yun Cheng Qiao
    Shu Dong Wang
    Acta Mathematica Sinica, English Series, 2017, 33 : 571 - 590
  • [29] Norm Equalities and Inequalities for Three Circulant Operator Matrices
    Zhao Lin JIANG
    Yun Cheng QIAO
    Shu Dong WANG
    ActaMathematicaSinica, 2017, 33 (04) : 571 - 590
  • [30] Norm Equalities and Inequalities for Three Circulant Operator Matrices
    Jiang, Zhao Lin
    Qiao, Yun Cheng
    Wang, Shu Dong
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2017, 33 (04) : 571 - 590