Credit Card Fraud Detection with Automated Machine Learning Systems

被引:5
|
作者
Plakandaras, Vasilios [1 ]
Gogas, Periklis [1 ]
Papadimitriou, Theophilos [1 ]
Tsamardinos, Ioannis [2 ,3 ]
机构
[1] Democritus Univ Thrace, Dept Econ, Komotini, Greece
[2] Univ Crete, Dept Comp Sci, Iraklion, Greece
[3] Gnosis Data Anal, Iraklion, Greece
关键词
CLASSIFIERS; ALGORITHMS;
D O I
10.1080/08839514.2022.2086354
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The steady increase at the turnover of online trading during the last decade and the increasing use of credit cards has subsequently made credit card frauds more prevalent. Machine Learning (ML) models are among the most prominent techniques in detecting illicit transactions. In this paper, we apply the Just-Add-Data (JAD), a system that automates the selection of Machine Learning algorithms, the tuning of their hyper-parameter values, and the estimation of performance in detecting fraudulent transactions using a highly unbalanced dataset, swiftly providing prediction model for credit card fraud detection. The training of the model does not require the user setting up any of the methods' (hyper)parameters. In addition, it is trivial to retrain the model with the arrival of new data, to visualize, interpret, and share the results at all management levels within a credit card organization, as well as to apply the model. The model selected by JAD identifies 32 out of a total of 39 fraudulent transactions of the test sample, with all missed fraudulent transactions being small transactions below 50euro. The comparison with other methods on the same dataset reveals that all the above come with a high forecasting performance that matches the existing literature.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Representation Learning in Graphs for Credit Card Fraud Detection
    Van Belle, Rafael
    Mitrovic, Sandra
    De Weerdt, Jochen
    MINING DATA FOR FINANCIAL APPLICATIONS, 2020, 11985 : 32 - 46
  • [42] Fraud Shield: Credit Card Fraud Detection with Ensemble and Deep Learning
    Menon, Pranav Prakash
    Sachdeva, Amit
    Gayathn, V. M.
    2024 4TH INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING AND SOCIAL NETWORKING, ICPCSN 2024, 2024, : 224 - 230
  • [43] Credit Card Fraud Detection using Deep Learning
    Shenvi, Pranali
    Samant, Neel
    Kumar, Shubham
    Kulkarni, Vaishali
    2019 IEEE 5TH INTERNATIONAL CONFERENCE FOR CONVERGENCE IN TECHNOLOGY (I2CT), 2019,
  • [44] Transfer Learning Strategies for Credit Card Fraud Detection
    Lebichot, Bertrand
    Verhelst, Theo
    Le Borgne, Yann-Ael
    He-Guelton, Liyun
    Oble, Frederic
    Bontempi, Gianluca
    IEEE ACCESS, 2021, 9 : 114754 - 114766
  • [45] Credit Card Fraud Detection
    Tiwari, Mohit
    Sharma, Vipul
    Bala, Devashish
    Devansh
    Kaushal, Dishant
    JOURNAL OF ALGEBRAIC STATISTICS, 2022, 13 (02) : 1778 - 1789
  • [46] Credit Card Fraud Detection Using Machine Learning and Predictive Models: A Comparative Study
    Sontakke, Atharv
    Yewale, Mrunali
    Zambare, Sejal
    Tendulkar, Sakshi
    Chaudhari, Anagha
    HYBRID INTELLIGENT SYSTEMS, HIS 2021, 2022, 420 : 171 - 180
  • [47] Detection of fraud in IoT based credit card collected dataset using machine learning
    Alatawi, Mohammed Naif
    MACHINE LEARNING WITH APPLICATIONS, 2025, 19
  • [48] Bibliometric Analysis of Recent Trends in Machine Learning for Online Credit Card Fraud Detection
    Hove, Dickson
    Olugbara, Oludayo
    Singh, Alveen
    JOURNAL OF SCIENTOMETRIC RESEARCH, 2024, 13 (01) : 43 - 57
  • [49] A Machine Learning Method with Hybrid Feature Selection for Improved Credit Card Fraud Detection
    Mienye, Ibomoiye Domor
    Sun, Yanxia
    APPLIED SCIENCES-BASEL, 2023, 13 (12):
  • [50] Comparison of Poisson process and machine learning algorithms approach for credit card fraud detection
    Izotova, Anastasiia
    Valiullin, Adel
    14TH INTERNATIONAL SYMPOSIUM INTELLIGENT SYSTEMS, 2021, 186 : 721 - 726