Credit Card Fraud Detection with Automated Machine Learning Systems

被引:5
|
作者
Plakandaras, Vasilios [1 ]
Gogas, Periklis [1 ]
Papadimitriou, Theophilos [1 ]
Tsamardinos, Ioannis [2 ,3 ]
机构
[1] Democritus Univ Thrace, Dept Econ, Komotini, Greece
[2] Univ Crete, Dept Comp Sci, Iraklion, Greece
[3] Gnosis Data Anal, Iraklion, Greece
关键词
CLASSIFIERS; ALGORITHMS;
D O I
10.1080/08839514.2022.2086354
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The steady increase at the turnover of online trading during the last decade and the increasing use of credit cards has subsequently made credit card frauds more prevalent. Machine Learning (ML) models are among the most prominent techniques in detecting illicit transactions. In this paper, we apply the Just-Add-Data (JAD), a system that automates the selection of Machine Learning algorithms, the tuning of their hyper-parameter values, and the estimation of performance in detecting fraudulent transactions using a highly unbalanced dataset, swiftly providing prediction model for credit card fraud detection. The training of the model does not require the user setting up any of the methods' (hyper)parameters. In addition, it is trivial to retrain the model with the arrival of new data, to visualize, interpret, and share the results at all management levels within a credit card organization, as well as to apply the model. The model selected by JAD identifies 32 out of a total of 39 fraudulent transactions of the test sample, with all missed fraudulent transactions being small transactions below 50euro. The comparison with other methods on the same dataset reveals that all the above come with a high forecasting performance that matches the existing literature.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Comprehensive Analysis for Fraud Detection of Credit Card through Machine Learning
    Roy, Parth
    Rao, Prateek
    Gajre, Jay
    Katake, Kanchan
    Jagtap, Arvind
    Gajmal, Yogesh
    2021 INTERNATIONAL CONFERENCE ON EMERGING SMART COMPUTING AND INFORMATICS (ESCI), 2021, : 765 - 769
  • [22] Enhancing Credit Card Fraud Detection: An Ensemble Machine Learning Approach
    Khalid, Abdul Rehman
    Owoh, Nsikak
    Uthmani, Omair
    Ashawa, Moses
    Osamor, Jude
    Adejoh, John
    BIG DATA AND COGNITIVE COMPUTING, 2024, 8 (01)
  • [23] Enhanced Credit Card Fraud Detection Model Using Machine Learning
    Alfaiz, Noor Saleh
    Fati, Suliman Mohamed
    ELECTRONICS, 2022, 11 (04)
  • [24] A Review of Credit Card Fraud Detection Using Machine Learning Techniques
    Boutaher, Nadia
    Elomri, Amina
    Abghour, Noreddine
    Moussaid, Khalid
    Rida, Mohamed
    PROCEEDINGS OF 2020 5TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND ARTIFICIAL INTELLIGENCE: TECHNOLOGIES AND APPLICATIONS (CLOUDTECH'20), 2020, : 163 - 167
  • [25] Machine learning approach on apache spark for credit card fraud detection
    Santosh T.
    Ramesh D.
    Ingenierie des Systemes d'Information, 2020, 25 (01): : 101 - 106
  • [26] Autonomous credit card fraud detection using machine learning approach☆
    Femila Roseline, J.
    Naidu, G.B.S.R.
    Samuthira Pandi, V.
    Alamelu alias Rajasree, S.
    Mageswari, Dr.N.
    Computers and Electrical Engineering, 2022, 102
  • [27] Performance Evaluation of Machine Learning Algorithms for Credit Card Fraud Detection
    Mittal, Sangeeta
    Tyagi, Shivani
    2019 9TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING, DATA SCIENCE & ENGINEERING (CONFLUENCE 2019), 2019, : 320 - 324
  • [28] A Review of Machine Learning Algorithms for Fraud Detection in Credit Card Transaction
    Lim, Kha Shing
    Lee, Lam Hong
    Sim, Yee-Wai
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2021, 21 (09): : 31 - 40
  • [29] Machine Learning Based on Resampling Approaches and Deep Reinforcement Learning for Credit Card Fraud Detection Systems
    Tran Khanh Dang
    Thanh Cong Tran
    Luc Minh Tuan
    Mai Viet Tiep
    APPLIED SCIENCES-BASEL, 2021, 11 (21):
  • [30] Ensemble Learning for Credit Card Fraud Detection
    Sohony, Ishan
    Pratap, Rameshwar
    Nambiar, Ullas
    PROCEEDINGS OF THE ACM INDIA JOINT INTERNATIONAL CONFERENCE ON DATA SCIENCE AND MANAGEMENT OF DATA (CODS-COMAD'18), 2018, : 289 - 294