Predictive process monitoring based on distributed sensor data

被引:1
|
作者
Wiegand, Mario [1 ]
Stolpe, Marco [2 ]
Deuse, Jochen [1 ]
Morik, Katharina [2 ]
机构
[1] TU Dortmund, IPS, Leonhard Euler Str 5, D-44227 Dortmund, Germany
[2] TU Dortmund, Lehrstuhl Knstliche Intelligenz LS VIII, Otto Hahn Str 12, D-44227 Dortmund, Germany
关键词
Sensor data; process monitoring; process control; time series; machine learning; SOFT SENSOR; COMPONENT ANALYSIS; QUALITY ESTIMATION; MODEL; MACHINE;
D O I
10.1515/auto-2016-0013
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a concept for predictive process monitoring based on real-time analysis of distributed sensor data with means of machine learning. To that end the paper proposes a systematic procedure for data preparation and analysis allowing for the prediction of final product quality.
引用
收藏
页码:521 / 533
页数:13
相关论文
共 50 条
  • [31] Statistical process monitoring based on dissimilarity of process data
    Kano, M
    Hasebe, S
    Hashimoto, L
    Ohno, H
    AICHE JOURNAL, 2002, 48 (06) : 1231 - 1240
  • [32] On Sensor Data Clustering for Machine Status Monitoring and Its Application to Predictive Maintenance
    Oliosi, Eleonora
    Calzavara, Gabriele
    Ferrari, Gianluigi
    IEEE SENSORS JOURNAL, 2023, 23 (09) : 9620 - 9639
  • [33] Optimal Feature Selection for Distributed Data-Driven Process Monitoring
    Khatib, Shaaz
    Daoutidis, Prodromos
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2020, 59 (06) : 2307 - 2317
  • [34] A GA based SVM-Bayesian technique and its application in process monitoring for mixed distributed data
    Qian, Cheng
    Li, Shihua
    Wang, Yongjian
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2024, 208 : 526 - 535
  • [35] Explainable Predictive Process Monitoring
    Galanti, Riccardo
    Coma-Puig, Bernat
    de Leoni, Massimiliano
    Carmona, Josep
    Navarin, Nicolo
    2020 2ND INTERNATIONAL CONFERENCE ON PROCESS MINING (ICPM 2020), 2020, : 1 - 8
  • [36] Predictive Process Monitoring in Apromore
    Verenich, Ilya
    Moskovski, Stanislav
    Raboczi, Simon
    Dumas, Marlon
    La Rosa, Marcello
    Maggi, Fabrizio Maria
    INFORMATION SYSTEMS IN THE BIG DATA ERA, 2018, 317 : 244 - 253
  • [37] Predictive Business Process Monitoring Approach Based on Hierarchical Transformer
    Ni, Weijian
    Zhao, Gang
    Liu, Tong
    Zeng, Qingtian
    Xu, Xingzong
    ELECTRONICS, 2023, 12 (06)
  • [38] Data-Driven Monitoring for Distributed Sensor Networks: An End-to-End Strategy Based on Collaborative Learning
    Chen, Fuyang
    He, Sudao
    Li, Yiwei
    Chen, Hongtian
    IEEE SENSORS JOURNAL, 2022, 22 (22) : 21795 - 21805
  • [39] Distributed predictive process control in metallurgy
    Kazarinov, L. S.
    Parsunkin, B. N.
    Litvinova, A. E.
    Litvinov, S. A.
    AUTOMATION AND REMOTE CONTROL, 2017, 78 (02) : 349 - 356
  • [40] Dissipativity Based Distributed Model Predictive Control for Process Network Reconfiguration
    He, Ye
    Li, Shaoyuan
    Zheng, Yi
    2017 11TH ASIAN CONTROL CONFERENCE (ASCC), 2017, : 817 - 822