Predictive Process Monitoring in Apromore

被引:3
|
作者
Verenich, Ilya [1 ,2 ]
Moskovski, Stanislav [2 ]
Raboczi, Simon [3 ]
Dumas, Marlon [2 ]
La Rosa, Marcello [3 ]
Maggi, Fabrizio Maria [2 ]
机构
[1] Queensland Univ Technol, Brisbane, Qld, Australia
[2] Univ Tartu, Tartu, Estonia
[3] Univ Melbourne, Melbourne, Vic, Australia
来源
关键词
Process mining; Predictive monitoring; Business process; Machine learning;
D O I
10.1007/978-3-319-92901-9_21
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper discusses the integration of Nirdizati, a tool for predictive process monitoring, into the Web-based process analytics platform Apromore. Through this integration, Apromore's users can use event logs stored in the Apromore repository to train a range of predictive models, and later use the trained models to predict various performance indicators of running process cases from a live event stream. For example, one can predict the remaining time or the next events until case completion, the case outcome, or the violation of compliance rules or internal policies. The predictions can be presented graphically via a dashboard that offers multiple visualization options, including a range of summary statistics about ongoing and past process cases. They can also be exported into a text file for periodic reporting or to be visualized in third-parties business intelligence tools. Based on these predictions, operations managers may identify potential issues early on, and take remedial actions in a timely fashion, e.g. reallocating resources from one case onto another to avoid that the case runs overtime.
引用
收藏
页码:244 / 253
页数:10
相关论文
共 50 条
  • [1] Checking Business Process Correctness in Apromore
    Fornari, Fabrizio
    La Rosa, Marcello
    Polini, Andrea
    Re, Barbara
    Tiezzi, Francesco
    INFORMATION SYSTEMS IN THE BIG DATA ERA, 2018, 317 : 114 - 123
  • [2] APROMORE: An advanced process model repository
    La Rosa, Marcell
    Reijers, Hajo A.
    van der Aalst, Wil M. P.
    Dijkman, Remco M.
    Mendling, Jan
    Dumas, Marlon
    Garcia-Banuelos, Luciano
    EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (06) : 7029 - 7040
  • [3] Managing Process Model Collections with AProMoRe
    Fauvet, M. C.
    La Rosa, M.
    Sadegh, M.
    Alshareef, A.
    Dijkman, R. M.
    Garcia-Banuelos, Luciano
    Reijers, H. A.
    van der Aalst, W. M. P.
    Dumas, Marlon
    Mendling, Jan
    SERVICE-ORIENTED COMPUTING - ICSOC 2010, PROCEEDINGS, 2010, 6470 : 699 - +
  • [4] Explainable Predictive Process Monitoring
    Galanti, Riccardo
    Coma-Puig, Bernat
    de Leoni, Massimiliano
    Carmona, Josep
    Navarin, Nicolo
    2020 2ND INTERNATIONAL CONFERENCE ON PROCESS MINING (ICPM 2020), 2020, : 1 - 8
  • [5] Temporal stability in predictive process monitoring
    Teinemaa, Irene
    Dumas, Marlon
    Leontjeva, Anna
    Maggi, Fabrizio Maria
    DATA MINING AND KNOWLEDGE DISCOVERY, 2018, 32 (05) : 1306 - 1338
  • [6] Towards Reliable Predictive Process Monitoring
    Klinkmueller, Christopher
    van Beest, Nick R. T. P.
    Weber, Ingo
    INFORMATION SYSTEMS IN THE BIG DATA ERA, 2018, 317 : 163 - 181
  • [7] Temporal stability in predictive process monitoring
    Irene Teinemaa
    Marlon Dumas
    Anna Leontjeva
    Fabrizio Maria Maggi
    Data Mining and Knowledge Discovery, 2018, 32 : 1306 - 1338
  • [8] Supporting Interpretability in Predictive Process Monitoring Using Process Maps
    Maita, Ana Rocio Cardenas
    Fantinato, Marcelo
    Peres, Sarajane Marques
    Maggi, Fabrizio Maria
    ENTERPRISE INFORMATION SYSTEMS, ICEIS 2023, PT I, 2024, 518 : 230 - 246
  • [9] Handling Concept Drift in Predictive Process Monitoring
    Maisenbacher, Marco
    Weidlich, Matthias
    2017 IEEE INTERNATIONAL CONFERENCE ON SERVICES COMPUTING (SCC), 2017, : 1 - 8
  • [10] Predictive Process Monitoring for Airport Operational Support
    Gunnarsson, Bjoern Rafn
    vanden Broucke, Seppe
    Verhoeven, Thibault
    De Weerdt, Jochen
    KUNSTLICHE INTELLIGENZ, 2025,