Compnet: A New Scheme for Single Image Super Resolution based on Deep Convolutional Neural Network

被引:16
|
作者
Esmaeilzehi, Alireza [1 ]
Ahmad, M. Omair [1 ]
Swamy, M. N. S. [1 ]
机构
[1] Concordia Univ, Dept Elect & Comp Engn, Montreal, PQ H3G 1M8, Canada
来源
IEEE ACCESS | 2018年 / 6卷
基金
加拿大自然科学与工程研究理事会;
关键词
Image super resolution; residual learning; deep learning; SUPERRESOLUTION;
D O I
10.1109/ACCESS.2018.2874442
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The features produced by the layers of a neural network become increasingly more sparse as the network gets deeper and consequently, the learning capability of the network is not further enhanced as the number of layers is increased. In this paper, a novel residual deep network, called CompNet, is proposed for the single image super resolution problem without an excessive increase in the network complexity. The idea behind the proposed network is to compose the residual signal that is more representative of the features produced by the different layers of the network and it is not as sparse. The proposed network is experimented on different benchmark datasets and is shown to outperform the state-of-the-art schemes designed to solve the super resolution problem.
引用
收藏
页码:59963 / 59974
页数:12
相关论文
共 50 条
  • [31] Super Resolution Algorithm of Color RGB Image Based on Convolutional Neural Network
    Pan, Chao
    Ren, Zhengwei
    Zhang, Jiehui
    JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2021, 11 (04) : 1188 - 1194
  • [32] Image Super-resolution Reconstruction Algorithm Based on Convolutional Neural Network
    He Jingxuan
    Zhang Jian
    Zhang Yonghui
    Wang Rong
    PROCEEDINGS OF 2018 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION, ELECTRONICS AND ELECTRICAL ENGINEERING (AUTEEE), 2018, : 267 - 271
  • [33] Image Super-Resolution Based on Error Compensation with Convolutional Neural Network
    Lu, Wei-Ting
    Lin, Chien-Wei
    Kuo, Chih-Hung
    Tung, Ying-Chan
    2017 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC 2017), 2017, : 1160 - 1163
  • [34] Terahertz image super-resolution based on a complex convolutional neural network
    Wang, Ying
    Qi, Feng
    Wang, Jinkuan
    OPTICS LETTERS, 2021, 46 (13) : 3123 - 3126
  • [35] Medical Image Super Resolution Reconstruction Based on Multiscale Convolutional Neural Network
    Song, Jianqiao
    Feng, Wang
    XiangWei
    Huang, Siwei
    BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2019, 124 : 356 - 356
  • [36] Improved image super-resolution algorithm based on convolutional neural network
    Xiao J.
    Liu E.
    Zhu L.
    Lei J.
    1600, Chinese Optical Society (37):
  • [37] Image Super-resolution Based on Tiny Recurrent Convolutional Neural Network
    Ma Hao-yu
    Xu Zhi-hai
    Feng Hua-jun
    Li Qi
    Chen Yue-ting
    ACTA PHOTONICA SINICA, 2018, 47 (04)
  • [38] Channel Split Convolutional Neural Network for Single Image Super-Resolution (CSISR)
    Prajapati, Kalpesh
    Chudasama, Vishal
    Upla, Kishor
    Raia, Kiran
    Ramachandra, Raghavendra
    Busch, Christoph
    2021 16TH IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC FACE AND GESTURE RECOGNITION (FG 2021), 2021,
  • [39] SRSubBandNet: A New Deep Learning Scheme for Single Image Super Resolution based on Subband Reconstruction
    Esmaeilzehi, Alireza
    Ahmad, M. Omair
    Swamy, M. N. S.
    2019 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2019,
  • [40] A DEEP CONVOLUTIONAL NETWORK FOR MEDICAL IMAGE SUPER-RESOLUTION
    Gao, Yunxing
    Li, Hengjian
    Dong, Jiwen
    Feng, Guang
    2017 CHINESE AUTOMATION CONGRESS (CAC), 2017, : 5310 - 5315