Compnet: A New Scheme for Single Image Super Resolution based on Deep Convolutional Neural Network

被引:16
|
作者
Esmaeilzehi, Alireza [1 ]
Ahmad, M. Omair [1 ]
Swamy, M. N. S. [1 ]
机构
[1] Concordia Univ, Dept Elect & Comp Engn, Montreal, PQ H3G 1M8, Canada
来源
IEEE ACCESS | 2018年 / 6卷
基金
加拿大自然科学与工程研究理事会;
关键词
Image super resolution; residual learning; deep learning; SUPERRESOLUTION;
D O I
10.1109/ACCESS.2018.2874442
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The features produced by the layers of a neural network become increasingly more sparse as the network gets deeper and consequently, the learning capability of the network is not further enhanced as the number of layers is increased. In this paper, a novel residual deep network, called CompNet, is proposed for the single image super resolution problem without an excessive increase in the network complexity. The idea behind the proposed network is to compose the residual signal that is more representative of the features produced by the different layers of the network and it is not as sparse. The proposed network is experimented on different benchmark datasets and is shown to outperform the state-of-the-art schemes designed to solve the super resolution problem.
引用
收藏
页码:59963 / 59974
页数:12
相关论文
共 50 条
  • [21] Deep Iterative Residual Convolutional Network for Single Image Super-Resolution
    Umer, Rao M.
    Foresti, G. L.
    Micheloni, C.
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 1852 - 1858
  • [22] Single image super-resolution based on convolutional neural networks
    Zou, Lamei
    Luo, Ming
    Yang, Weidong
    Li, Peng
    Jin, Liujia
    MIPPR 2017: PATTERN RECOGNITION AND COMPUTER VISION, 2017, 10609
  • [23] U-SRN: Convolutional Neural network for single image super resolution
    Monika Dixit
    Ram Narayan Yadav
    Multimedia Tools and Applications, 2024, 83 : 46875 - 46892
  • [24] U-SRN: Convolutional Neural network for single image super resolution
    Dixit, Monika
    Yadav, Ram Narayan
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (16) : 46875 - 46892
  • [25] A Compact Deep Neural Network for Single Image Super-Resolution
    Xu, Xiaoyu
    Qian, Jian
    Yu, Li
    Yu, Shengju
    HaoTao
    Zhu, Ran
    MULTIMEDIA MODELING (MMM 2020), PT II, 2020, 11962 : 148 - 160
  • [26] Construction of super-resolution model of remote sensing image based on deep convolutional neural network
    Wei, Zikang
    Liu, Yunqing
    COMPUTER COMMUNICATIONS, 2021, 178 : 191 - 200
  • [27] Residual Wavelet Coefficients Prediction using deep Convolutional Neural Network for Single Image Super-Resolution
    Amaranageswarao, Gadipudi
    Deivalakshmi, S.
    2020 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND SIGNAL PROCESSING (AISP), 2020,
  • [28] POLARIMETRIC SAR IMAGE SUPER-RESOLUTION VIA DEEP CONVOLUTIONAL NEURAL NETWORK
    Lin, Liupeng
    Li, Jie
    Yuan, Qiangqiang
    Shen, Huanfeng
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 3205 - 3208
  • [29] Single Image Super-Resolution Based on Multi-Scale Competitive Convolutional Neural Network
    Du, Xiaofeng
    Qu, Xiaobo
    He, Yifan
    Guo, Di
    SENSORS, 2018, 18 (03)
  • [30] License Plate Image Super-Resolution Based on Convolutional Neural Network
    Yang, Yang
    Bi, Ping
    Liu, Ying
    2018 IEEE 3RD INTERNATIONAL CONFERENCE ON IMAGE, VISION AND COMPUTING (ICIVC), 2018, : 723 - 727