Real-Time Robotic Grasping and Localization Using Deep Learning-Based Object Detection Technique

被引:0
|
作者
Farag, Mohannad [1 ]
Abd Ghafar, Abdul Nasir [1 ]
Alsibai, Mohammed Hayyan [2 ]
机构
[1] Univ Malaysia Pahang, Fac Engn Technol, Gambang 26300, Pahang, Malaysia
[2] Univ Sci & Technol, Fac Engn & Technol Int, Damascus, Syria
关键词
deep learning; CNN; object detection; edge detection; real-time grasp detection; robot positioning; robot arm;
D O I
10.1109/i2cacis.2019.8825093
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work aims to increase the impact of computer vision on robotic positioning and grasping in industrial assembly lines. Real-time object detection and localization problem is addressed for robotic grasp-and-place operation using Selective Compliant Assembly Robot Arm (SCARA). The movement of SCARA robot is guided by deep learning-based object detection for grasp task and edge detection-based position measurement for place task. Deep Convolutional Neural Network (CNN) model, called KSSnet, is developed for object detection based on CNN Alexnet using transfer learning approach. SCARA training dataset with 4000 images of two object categories associated with 20 different positions is created and labeled to train KSSnet model. The position of the detected object is included in prediction result at the output classification layer. This method achieved the state-of-the-art results at 100% precision of object detection, 100% accuracy for robotic positioning and 100% successful real-time robotic grasping within 0.38 seconds as detection time. A combination of Zerocross and Canny edge detectors is implemented on a circular object to simplify the place task. For accurate position measurement, the distortion of camera lens is removed using camera calibration technique where the measured position represents the desired location to place the grasped object. The result showed that the robot successfully moved to the measured position with positioning Root Mean Square Error (0.361, 0.184) mm and 100% for successful place detection.
引用
收藏
页码:139 / 144
页数:6
相关论文
共 50 条
  • [21] Deep Learning-Based Real-Time Failure Detection of Storage Devices
    Su, Chuan-Jun
    Tsai, Lien-Chung
    Huang, Shi-Feng
    Li, Yi
    ADVANCES IN ARTIFICIAL INTELLIGENCE, SOFTWARE AND SYSTEMS ENGINEERING, 2020, 965 : 160 - 168
  • [22] Learning robust, real-time, reactive robotic grasping
    Morrison, Douglas
    Corke, Peter
    Leitner, Jurgen
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2020, 39 (2-3): : 183 - 201
  • [23] Apple detection and counting using real-time video based on deep learning and object tracking
    Gao F.
    Wu Z.
    Suo R.
    Zhou Z.
    Li R.
    Fu L.
    Zhang Z.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2021, 37 (21): : 217 - 224
  • [24] Deep learning-based object recognition in multispectral satellite imagery for real-time applications
    Povilas Gudžius
    Olga Kurasova
    Vytenis Darulis
    Ernestas Filatovas
    Machine Vision and Applications, 2021, 32
  • [25] Deep learning-based object recognition in multispectral satellite imagery for real-time applications
    Gudzius, Povilas
    Kurasova, Olga
    Darulis, Vytenis
    Filatovas, Ernestas
    MACHINE VISION AND APPLICATIONS, 2021, 32 (04)
  • [26] Network virtualization for real-time processing of object detection using deep learning
    Dae-Young Kim
    Ji-Hoon Park
    Youngchan Lee
    Seokhoon Kim
    Multimedia Tools and Applications, 2021, 80 : 35851 - 35869
  • [27] Network virtualization for real-time processing of object detection using deep learning
    Kim, Dae-Young
    Park, Ji-Hoon
    Lee, Youngchan
    Kim, Seokhoon
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (28-29) : 35851 - 35869
  • [28] Object Detection in Robotic Applications for Real-time Localization Using Semi-Unknown Objects
    Astola, Pekka
    Aref, Mohammad M.
    Vihonen, Juho
    Mattila, Jouni
    Tabus, Ioan
    2017 40TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP), 2017, : 682 - 687
  • [29] Real-time Quadrilateral Object Corner Detection Algorithm Based on Deep Learning
    Zhang, Jinfeng
    Jiao, Zhibin
    An, Xiangjing
    He, Yejun
    2019 COMPUTING, COMMUNICATIONS AND IOT APPLICATIONS (COMCOMAP), 2019, : 70 - 75
  • [30] Jellytoring: Real-Time Jellyfish Monitoring Based on Deep Learning Object Detection
    Martin-Abadal, Miguel
    Ruiz-Frau, Ana
    Hinz, Hilmar
    Gonzalez-Cid, Yolanda
    SENSORS, 2020, 20 (06)