Jellytoring: Real-Time Jellyfish Monitoring Based on Deep Learning Object Detection

被引:35
|
作者
Martin-Abadal, Miguel [1 ]
Ruiz-Frau, Ana [2 ]
Hinz, Hilmar [2 ]
Gonzalez-Cid, Yolanda [1 ]
机构
[1] Univ Illes Balears, Syst Robot & Vis Grp SRV, Dept Math & Comp Sci, Palma De Mallorca 07122, Spain
[2] UIB, Inst Mediterrani Estudis Avancats, CSIC, Dept Marine Ecosyst Dynam,IMEDEA, Esporles 07190, Spain
关键词
deep learning; object detection; jellyfish quantification; jellyfish monitoring; MARINE ECOSYSTEMS; NEURAL-NETWORK; CLIMATE-CHANGE; IMPACTS; FISHERIES;
D O I
10.3390/s20061708
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
During the past decades, the composition and distribution of marine species have changed due to multiple anthropogenic pressures. Monitoring these changes in a cost-effective manner is of high relevance to assess the environmental status and evaluate the effectiveness of management measures. In particular, recent studies point to a rise of jellyfish populations on a global scale, negatively affecting diverse marine sectors like commercial fishing or the tourism industry. Past monitoring efforts using underwater video observations tended to be time-consuming and costly due to human-based data processing. In this paper, we present Jellytoring, a system to automatically detect and quantify different species of jellyfish based on a deep object detection neural network, allowing us to automatically record jellyfish presence during long periods of time. Jellytoring demonstrates outstanding performance on the jellyfish detection task, reaching an F1 score of 95.2%; and also on the jellyfish quantification task, as it correctly quantifies the number and class of jellyfish on a real-time processed video sequence up to a 93.8% of its duration. The results of this study are encouraging and provide the means towards a efficient way to monitor jellyfish, which can be used for the development of a jellyfish early-warning system, providing highly valuable information for marine biologists and contributing to the reduction of jellyfish impacts on humans.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Deep Learning Based, Real-Time Object Detection for Autonomous Driving
    Akyol, Gamze
    Kantarci, Alperen
    Celik, Ali Eren
    Ak, Abdullah Cihan
    2020 28TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2020,
  • [2] Real-Time Deep Learning-Based Object Detection Framework
    Tarimo, William
    Sabra, Moustafa M.
    Hendre, Shonan
    2020 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2020, : 1829 - 1836
  • [3] Real-time Quadrilateral Object Corner Detection Algorithm Based on Deep Learning
    Zhang, Jinfeng
    Jiao, Zhibin
    An, Xiangjing
    He, Yejun
    2019 COMPUTING, COMMUNICATIONS AND IOT APPLICATIONS (COMCOMAP), 2019, : 70 - 75
  • [4] Deep Learning-Based Real-time Object Detection in Inland Navigation
    Hammedi, Wided
    Ramirez-Martinez, Metzli
    Brunet, Philippe
    Senouci, Sidi Mohammed
    Messous, Mohamed Ayoub
    2019 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2019,
  • [5] Experimental Deep Learning Object Detection in Real-time Colonoscopies
    Ciobanu, Adrian
    Luca, Mihaela
    Barbu, Tudor
    Drug, Vasile
    Olteanu, Andrei
    Vulpoi, Radu
    2021 INTERNATIONAL CONFERENCE ON E-HEALTH AND BIOENGINEERING (EHB 2021), 9TH EDITION, 2021,
  • [6] DEEP LEARNING BASED REAL-TIME FACIAL MASK DETECTION AND CROWD MONITORING
    Yang, Chan-Yun
    Samani, Hooman
    Ji, Nana
    Li, Chunxu
    Chen, Ding-Bang
    Qi, Man
    COMPUTING AND INFORMATICS, 2021, 40 (06) : 1263 - 1294
  • [7] Dynamic and Real-Time Object Detection Based on Deep Learning for Home Service Robots
    Ye, Yangqing
    Ma, Xiaolon
    Zhou, Xuanyi
    Bao, Guanjun
    Wan, Weiwei
    Cai, Shibo
    SENSORS, 2023, 23 (23)
  • [8] Real-time Indoor Object Detection Based on Deep Learning and Gradient Harmonizing Mechanism
    Chen, Min
    Ren, Xuemei
    Yan, Zhanyi
    PROCEEDINGS OF 2020 IEEE 9TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE (DDCLS'20), 2020, : 772 - 777
  • [9] Platooning control of drones with real-time deep learning object detection
    Dai, Xin
    Nagahara, Masaaki
    ADVANCED ROBOTICS, 2023, 37 (03) : 220 - 225
  • [10] Real-Time Lane Detection Based on Deep Learning
    Sun-Woo Baek
    Myeong-Jun Kim
    Upendra Suddamalla
    Anthony Wong
    Bang-Hyon Lee
    Jung-Ha Kim
    Journal of Electrical Engineering & Technology, 2022, 17 : 655 - 664