Variable Triebel-Lizorkin-Lorentz Spaces Associated to Operators

被引:1
|
作者
Saibi, Khedoudj [1 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Variable exponents; Lorentz spaces; Metric measure; Heat kernel; Maximal characterization; Atomic characterizations; BESOV; HARDY; DISTRIBUTIONS; DECOMPOSITION; INTEGRABILITY; SMOOTHNESS; DUALITY;
D O I
10.1007/s11785-022-01289-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (X, d, mu) be a space of homogenous type and L be a nonnegative self-adjoint operator on L-2 (X) with heat kernels satisfying Gaussian upper bounds. In this paper, we introduce the variable Triebel-Lizorkin-Lorentz space associated to the operator L on spaces of homogenous type and prove that this space can be characterized via the Peetre maximal functions. Then we establish an atomic decomposition for this space.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Variable Triebel–Lizorkin–Lorentz Spaces Associated to Operators
    Khedoudj Saibi
    Complex Analysis and Operator Theory, 2022, 16
  • [2] Triebel-Lizorkin-Lorentz Spaces and the Navier-Stokes Equations
    Hobus, Pascal
    Saal, Juergen
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2019, 38 (01): : 41 - 72
  • [3] On the Well-Posedness of the Boussinesq Equation in the Triebel-Lizorkin-Lorentz Spaces
    Xiang, Zhaoyin
    Yan, Wei
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [4] On the well-posedness of the quasi-geostrophic equation in the Triebel-Lizorkin-Lorentz spaces
    Zhaoyin Xiang
    Wei Yan
    Journal of Evolution Equations, 2011, 11 : 241 - 263
  • [5] On the well-posedness of the quasi-geostrophic equation in the Triebel-Lizorkin-Lorentz spaces
    Xiang, Zhaoyin
    Yan, Wei
    JOURNAL OF EVOLUTION EQUATIONS, 2011, 11 (02) : 241 - 263
  • [6] Triebel–Lizorkin–Morrey spaces associated to Hermite operators
    Nguyen Ngoc Trong
    Le Xuan Truong
    Tran Tri Dung
    Hanh Nguyen Vo
    Revista Matemática Complutense, 2020, 33 : 527 - 555
  • [7] Trace and extension operators for Besov spaces and Triebel–Lizorkin spaces with variable exponents
    Takahiro Noi
    Revista Matemática Complutense, 2016, 29 : 341 - 404
  • [8] Triebel-Lizorkin-Morrey spaces associated to Hermite operators
    Trong, Nguyen Ngoc
    Truong, Le Xuan
    Dung, Tran Tri
    Vo, Hanh Nguyen
    REVISTA MATEMATICA COMPLUTENSE, 2020, 33 (02): : 527 - 555
  • [9] Besov and Triebel-Lizorkin Spaces Associated to Hermite Operators
    The Anh Bui
    Xuan Thinh Duong
    Journal of Fourier Analysis and Applications, 2015, 21 : 405 - 448
  • [10] On the duality of variable Triebel–Lizorkin spaces
    Douadi Drihem
    Collectanea Mathematica, 2020, 71 : 263 - 278