Variable Triebel-Lizorkin-Lorentz Spaces Associated to Operators

被引:1
|
作者
Saibi, Khedoudj [1 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Variable exponents; Lorentz spaces; Metric measure; Heat kernel; Maximal characterization; Atomic characterizations; BESOV; HARDY; DISTRIBUTIONS; DECOMPOSITION; INTEGRABILITY; SMOOTHNESS; DUALITY;
D O I
10.1007/s11785-022-01289-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (X, d, mu) be a space of homogenous type and L be a nonnegative self-adjoint operator on L-2 (X) with heat kernels satisfying Gaussian upper bounds. In this paper, we introduce the variable Triebel-Lizorkin-Lorentz space associated to the operator L on spaces of homogenous type and prove that this space can be characterized via the Peetre maximal functions. Then we establish an atomic decomposition for this space.
引用
收藏
页数:18
相关论文
共 50 条