On the duality of variable Triebel–Lizorkin spaces

被引:0
|
作者
Douadi Drihem
机构
[1] M’sila University,Laboratory of Functional Analysis and Geometry of Spaces, Department of Mathematics
来源
Collectanea Mathematica | 2020年 / 71卷
关键词
Besov-type space; Triebel–Lizorkin spaces; Duality; Variable exponent; Primary 46B10; Secondary 46E35;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to prove the duality of Triebel–Lizorkin spaces F1,q·α·\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ F_{1,q\left( \cdot \right) }^{\alpha \left( \cdot \right) }$$\end{document}. First, we prove the duality of associated sequence spaces. The result follows from the so-called φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document}-transform characterization in the sense of Frazier and Jawerth.
引用
收藏
页码:263 / 278
页数:15
相关论文
共 50 条