On the duality of variable Triebel–Lizorkin spaces

被引:0
|
作者
Douadi Drihem
机构
[1] M’sila University,Laboratory of Functional Analysis and Geometry of Spaces, Department of Mathematics
来源
Collectanea Mathematica | 2020年 / 71卷
关键词
Besov-type space; Triebel–Lizorkin spaces; Duality; Variable exponent; Primary 46B10; Secondary 46E35;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to prove the duality of Triebel–Lizorkin spaces F1,q·α·\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ F_{1,q\left( \cdot \right) }^{\alpha \left( \cdot \right) }$$\end{document}. First, we prove the duality of associated sequence spaces. The result follows from the so-called φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document}-transform characterization in the sense of Frazier and Jawerth.
引用
收藏
页码:263 / 278
页数:15
相关论文
共 50 条
  • [31] An admissibility for topological degree of variable Besov and Triebel-Lizorkin spaces
    Xu, Jingshi
    GEORGIAN MATHEMATICAL JOURNAL, 2011, 18 (02) : 365 - 375
  • [32] Local Characterizations of Besov and Triebel-Lizorkin Spaces with Variable Exponent
    Dong, Baohua
    Xu, Jingshi
    JOURNAL OF FUNCTION SPACES, 2014, 2014
  • [33] Commutator estimates for vector fields on variable Triebel-Lizorkin spaces
    Salah, Ben Mahmoud
    Douadi, Drihem
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (01) : 26 - 36
  • [34] Weak Triebel-Lizorkin Spaces with Variable Integrability, Summability and Smoothness
    Li, Wenchang
    Xu, Jingshi
    PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2019, 55 (02) : 259 - 282
  • [35] Trace and extension operators for Besov spaces and Triebel-Lizorkin spaces with variable exponents
    Noi, Takahiro
    REVISTA MATEMATICA COMPLUTENSE, 2016, 29 (02): : 341 - 404
  • [36] Holomorphic Triebel-Lizorkin spaces
    Ortega, JM
    Fabrega, J
    JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 151 (01) : 177 - 212
  • [37] Triebel–Lizorkin spaces with general weights
    Douadi Drihem
    Advances in Operator Theory, 2023, 8
  • [38] SPACES OF TRIEBEL-LIZORKIN TYPE
    PEETRE, J
    ARKIV FOR MATEMATIK, 1975, 13 (01): : 123 - 130
  • [39] CHARACTERIZATIONS OF VARIABLE TRIEBEL-LIZORKIN-TYPE SPACES VIA BALL AVERAGES
    Zhuo, Ciqiang
    Chang, Der-Chen
    Yang, Dachun
    Yuan, Wen
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2018, 19 (01) : 19 - 40
  • [40] New Herz Type Besov and Triebel-Lizorkin Spaces with Variable Exponents
    Dong, Baohua
    Xu, Jingshi
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2012,