Short Term Electricity Spot Price Forecasting Using CatBoost and Bidirectional Long Short Term Memory Neural Network

被引:10
|
作者
Zhang, Fan [1 ,2 ]
Fleyeh, Hasan [2 ]
机构
[1] Dalarna Univ, Dept Energy Technol, S-79188 Falun, Sweden
[2] Dalarna Univ, Dept Comp Engn, S-79188 Falun, Sweden
关键词
Long short term memory neural network; electricity markets; boosting; electricity price forecasting;
D O I
10.1109/eem.2019.8916412
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Electricity price forecasting plays a crucial role in liberalized electricity markets. Generally speaking, short term electricity price forecasting is essential for electricity providers to adjust the schedule of production in order to balance consumers' demands and electricity generation. Short term forecasting results are also utilized by market players to decide the timing of purchasing or selling to gain maximized profit. Among existing forecasting approaches, neural networks are regarded as the state of art method. However, deep neural networks are not studied comprehensively in this field, thus the motivation of this study is to fill this research gap. In this paper, a novel hybrid approach is proposed for short term electricity price forecasting. To be more specific, categorical boosting (Catboost) algorithm is used for feature selection and a bidirectional long short term memory neural network (BDLSTM) serves as the main forecasting engine. To evaluate the effectiveness of the proposed approach, two datasets from the Nord Pool market are employed in the experiment. Moreover, the performance of multi-layer perception (MLP) neural network, support vector regression (SVR) and ensemble tree models are evaluated and compared with the proposed model. Results show that the proposed approach outperforms the rest models in terms of mean absolute percentage error (MAPE).
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Automatic Lip Reading Using Convolution Neural Network and Bidirectional Long Short-term Memory
    Lu, Yuanyao
    Yan, Jie
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2020, 34 (01)
  • [42] Short-Term Traffic Congestion Forecasting Using Attention-Based Long Short-Term Memory Recurrent Neural Network
    Zhang, Tianlin
    Liu, Ying
    Cui, Zhenyu
    Leng, Jiaxu
    Xie, Weihong
    Zhang, Liang
    COMPUTATIONAL SCIENCE - ICCS 2019, PT III, 2019, 11538 : 304 - 314
  • [43] Evolutionary Framework with Bidirectional Long Short-Term Memory Network for Stock Price Prediction
    Zheng, Hongying
    Wang, Hongyu
    Chen, Jianyong
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [44] Wind Power Forecasting Method Based on Bidirectional Long Short-Term Memory Neural Network and Error Correction
    Liu, Wei
    Liu, Yuming
    Fu, Lei
    Yang, Minghui
    Hu, Renchun
    Kang, Yanping
    ELECTRIC POWER COMPONENTS AND SYSTEMS, 2022, 49 (13-14) : 1169 - 1180
  • [45] Short-term electricity demand forecasting via variational autoencoders and batch training-based bidirectional long short-term memory
    Moradzadeh, Arash
    Moayyed, Hamed
    Zare, Kazem
    Mohammadi-Ivatloo, Behnam
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2022, 52
  • [46] Short-term forecasting of rail transit passenger flow based on long short-term memory neural network
    Liu, Yuan
    Qin, Yong
    Guo, Jianyuan
    Cai, Changjun
    Wang, Yaguan
    Jia, Limin
    2018 INTERNATIONAL CONFERENCE ON INTELLIGENT RAIL TRANSPORTATION (ICIRT), 2018,
  • [47] Short-term wind speed forecasting based on long short-term memory and improved BP neural network
    Chen, Gonggui
    Tang, Bangrui
    Zeng, Xianjun
    Zhou, Ping
    Kang, Peng
    Long, Hongyu
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2022, 134
  • [48] Electricity price default detection model based on long short-term memory network
    Zhang Jing
    Chen Yan
    Yan Furong
    Wan Quan
    Guo Hongbo
    Liu Junling
    Zhang Mingzhu
    Tan Yuxuan
    2024 IEEE 7TH INTERNATIONAL CONFERENCE ON AUTOMATION, ELECTRONICS AND ELECTRICAL ENGINEERING, AUTEEE, 2024, : 593 - 597
  • [49] Accurate ultra-short-term load forecasting based on load characteristic decomposition and convolutional neural network with bidirectional long short-term memory model
    Zhang, Mingyue
    Han, Yang
    Zalhaf, Amr S.
    Wang, Chaoyang
    Yang, Ping
    Wang, Congling
    Zhou, Siyu
    Xiong, Tianlong
    SUSTAINABLE ENERGY GRIDS & NETWORKS, 2023, 35
  • [50] Short-term Electricity Price Forecasting Based on Empirical Mode Decomposition and Deep Neural Network
    Bao, Gang
    Liu, Yikai
    Xu, Rui
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2022, 31 (06)