Short Term Electricity Spot Price Forecasting Using CatBoost and Bidirectional Long Short Term Memory Neural Network

被引:10
|
作者
Zhang, Fan [1 ,2 ]
Fleyeh, Hasan [2 ]
机构
[1] Dalarna Univ, Dept Energy Technol, S-79188 Falun, Sweden
[2] Dalarna Univ, Dept Comp Engn, S-79188 Falun, Sweden
关键词
Long short term memory neural network; electricity markets; boosting; electricity price forecasting;
D O I
10.1109/eem.2019.8916412
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Electricity price forecasting plays a crucial role in liberalized electricity markets. Generally speaking, short term electricity price forecasting is essential for electricity providers to adjust the schedule of production in order to balance consumers' demands and electricity generation. Short term forecasting results are also utilized by market players to decide the timing of purchasing or selling to gain maximized profit. Among existing forecasting approaches, neural networks are regarded as the state of art method. However, deep neural networks are not studied comprehensively in this field, thus the motivation of this study is to fill this research gap. In this paper, a novel hybrid approach is proposed for short term electricity price forecasting. To be more specific, categorical boosting (Catboost) algorithm is used for feature selection and a bidirectional long short term memory neural network (BDLSTM) serves as the main forecasting engine. To evaluate the effectiveness of the proposed approach, two datasets from the Nord Pool market are employed in the experiment. Moreover, the performance of multi-layer perception (MLP) neural network, support vector regression (SVR) and ensemble tree models are evaluated and compared with the proposed model. Results show that the proposed approach outperforms the rest models in terms of mean absolute percentage error (MAPE).
引用
收藏
页数:6
相关论文
共 50 条
  • [31] PowerLSTM: Power Demand Forecasting Using Long Short-Term Memory Neural Network
    Cheng, Yao
    Xu, Chang
    Mashima, Daisuke
    Thing, Vrizlynn L. L.
    Wu, Yongdong
    ADVANCED DATA MINING AND APPLICATIONS, ADMA 2017, 2017, 10604 : 727 - 740
  • [32] An Effective Short-Term Load Forecasting Methodology Using Convolutional Long Short Term Memory Network
    Rafi, Shafiul Hasan
    Nahid-Al Masood
    Deeba, Shohana Rahman
    PROCEEDINGS OF 2020 11TH INTERNATIONAL CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (ICECE), 2020, : 278 - 281
  • [33] A hybrid model for carbon price forecasting using GARCH and long short-term memory network
    Huang, Yumeng
    Dai, Xingyu
    Wang, Qunwei
    Zhou, Dequn
    APPLIED ENERGY, 2021, 285 (285)
  • [34] Improved long short-term memory network based short term load forecasting
    Cui, Jie
    Gao, Qiang
    Li, Dahua
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 4428 - 4433
  • [35] Assessment of stacked unidirectional and bidirectional long short-term memory networks for electricity load forecasting
    Atef, Sara
    Eltawil, Amr B.
    ELECTRIC POWER SYSTEMS RESEARCH, 2020, 187 (187)
  • [36] Hybrid long short-term memory and bidirectional multichannel network cascaded with split convolution for short-term load forecasting
    Hasanat, Syed Muhammad
    Ullah, Irshad
    Aurangzeb, Khursheed
    Rizwan, Muhammad
    Alhussein, Musaed
    Anwar, Muhammad Shahid
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 147
  • [37] FORECASTING STOCK MARKET DYNAMICS USING BIDIRECTIONAL LONG SHORT-TERM MEMORY
    PARK, Daehyeon
    RYU, Doojin
    ROMANIAN JOURNAL OF ECONOMIC FORECASTING, 2021, 24 (02): : 22 - 34
  • [38] On extended long short-term memory and dependent bidirectional recurrent neural network
    Su, Yuanhang
    Kuo, C-C Jay
    NEUROCOMPUTING, 2019, 356 : 151 - 161
  • [39] Sleep staging by bidirectional long short-term memory convolution neural network
    Chen, Xueyan
    He, Jie
    Wu, Xiaoqiang
    Yan, Wei
    Wei, Wei
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2020, 109 : 188 - 196
  • [40] Question Similarity Modeling with Bidirectional Long Short-Term Memory Neural Network
    An, Chao
    Huang, Jiuming
    Chang, Shoufeng
    Huang, Zhijie
    2016 IEEE FIRST INTERNATIONAL CONFERENCE ON DATA SCIENCE IN CYBERSPACE (DSC 2016), 2016, : 318 - 322