An O(n log n) algorithm for maximum st-flow in a directed planar graph

被引:15
|
作者
Borradaile, Glencora [1 ]
Klein, Philip [1 ]
机构
[1] Brown Univ, Dept Comp Sci, Providence, RI 02912 USA
关键词
D O I
10.1145/1109557.1109615
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We give the first correct O(n log n) algorithm for finding a maximum st-flow in a directed planar graph. After a preprocessing step that consists in finding single-source shortest-path distances in the dual, the algorithm consists of repeatedly saturating the leftmost residual s-to-t path.
引用
收藏
页码:524 / 533
页数:10
相关论文
共 50 条
  • [41] An O(M(n) log n) Algorithm for the Jacobi Symbol
    Brent, Richard P.
    Zimmermann, Paul
    ALGORITHMIC NUMBER THEORY, 2010, 6197 : 83 - +
  • [42] AN O(N LOG N) SET REFINEMENT ALGORITHM WITH APPLICATIONS
    RAO, NSV
    SRIDHAR, R
    IYENGAR, SS
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1991, 40 (3-4) : 129 - 138
  • [43] AN O(N LOG N) ALGORITHM FOR A MAXMIN LOCATION PROBLEM
    RANGAN, CP
    GOVINDAN, R
    DISCRETE APPLIED MATHEMATICS, 1992, 36 (02) : 203 - 205
  • [44] An O(n log n) algorithm for the generalized birthday problem
    Hwang, FK
    Wright, PE
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1997, 23 (04) : 443 - 451
  • [45] An O(n(3) log log n/log(2) n) time algorithm for all pairs shortest paths
    Han, Yijie
    Takaoka, Tadao
    JOURNAL OF DISCRETE ALGORITHMS, 2016, 38-41 : 9 - 19
  • [46] A O(n log2 n) Checker and O(n2 log n) Filtering Algorithm for the Energetic Reasoning
    Ouellet, Yanick
    Quimper, Claude-Guy
    INTEGRATION OF CONSTRAINT PROGRAMMING, ARTIFICIAL INTELLIGENCE, AND OPERATIONS RESEARCH, CPAIOR 2018, 2018, 10848 : 477 - 494
  • [47] AN O(LOG N) PARALLEL CONNECTIVITY ALGORITHM
    SHILOACH, Y
    VISHKIN, U
    JOURNAL OF ALGORITHMS, 1982, 3 (01) : 57 - 67
  • [48] An O(n log n) Approximation Scheme for Steiner Tree in Planar Graphs
    Borradaile, Glencora
    Klein, Philip
    Mathieu, Claire
    ACM TRANSACTIONS ON ALGORITHMS, 2009, 5 (03)
  • [49] An O(n2) parallel algorithm for the maximum flow problem
    Tabirca, S
    Tabirca, T
    Concurrent Information Processing and Computing, 2005, 195 : 294 - 300
  • [50] COMPUTING A MAXIMUM CARDINALITY MATCHING IN A BIPARTITE GRAPH IN TIME O(N1.5-SQUARE-ROOT-M/LOG N)
    ALT, H
    BLUM, N
    MEHLHORN, K
    PAUL, M
    INFORMATION PROCESSING LETTERS, 1991, 37 (04) : 237 - 240