Multilayer perceptrons and radial basis functions are universal robust approximators

被引:0
|
作者
Lo, JTH [1 ]
机构
[1] Univ Maryland, Dept Math & Stat, Baltimore, MD 21228 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The standard risk-sensitive (or exponential quadratic) functional used for robust control and filtering for linear systems is generalized. It is then shown that under relatively mild conditions, a function can be approximated, to any desired degree of accuracy with respect to these general risk-sensitive functionals, by a multilayer perceptron or a radial basis function network.
引用
收藏
页码:1311 / 1314
页数:4
相关论文
共 50 条
  • [1] COMPARING MULTILAYER PERCEPTRONS AND RADIAL BASIS FUNCTIONS NETWORKS IN SPEAKER RECOGNITION
    MAK, MW
    ALLEN, WG
    SEXTON, GG
    JOURNAL OF MICROCOMPUTER APPLICATIONS, 1993, 16 (02): : 147 - 159
  • [2] On Relationship of Multilayer Perceptrons and Piecewise Polynomial Approximators
    Lin, Ruiyuan
    You, Suya
    Rao, Raghuveer
    Kuo, C-C Jay
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 1813 - 1817
  • [3] Numerical bounds to assure initial local stability of NARX multilayer perceptrons and radial basis functions
    Irigoyen, Eloy
    Pinzolas, Miguel
    NEUROCOMPUTING, 2008, 72 (1-3) : 539 - 547
  • [4] Radial basis function neural networks of Hankel translates as universal approximators
    Marrero, Isabel
    ANALYSIS AND APPLICATIONS, 2019, 17 (06) : 897 - 930
  • [5] Relaxed conditions for radial-basis function networks to be universal approximators
    Liao, Y
    Fang, SC
    Nuttle, HLW
    NEURAL NETWORKS, 2003, 16 (07) : 1019 - 1028
  • [6] SPEAKER IDENTIFICATION USING MULTILAYER PERCEPTRONS AND RADIAL BASIS FUNCTION NETWORKS
    MAK, MW
    ALLEN, WG
    SEXTON, GG
    NEUROCOMPUTING, 1994, 6 (01) : 99 - 117
  • [7] From multilayer perceptrons to radial basis function networks: A comparative study
    Ding, SQ
    Xiang, C
    2004 IEEE CONFERENCE ON CYBERNETICS AND INTELLIGENT SYSTEMS, VOLS 1 AND 2, 2004, : 69 - 74
  • [8] Multilayer perceptrons as function approximators for analytical solutions of the diffusion equation
    Campisi, Laura D.
    COMPUTATIONAL GEOSCIENCES, 2015, 19 (04) : 769 - 780
  • [9] Multilayer perceptrons as function approximators for analytical solutions of the diffusion equation
    Laura D. Campisi
    Computational Geosciences, 2015, 19 : 769 - 780
  • [10] MULTILAYER FEEDFORWARD NETWORKS ARE UNIVERSAL APPROXIMATORS
    HORNIK, K
    STINCHCOMBE, M
    WHITE, H
    NEURAL NETWORKS, 1989, 2 (05) : 359 - 366