Multilayer perceptrons and radial basis functions are universal robust approximators

被引:0
|
作者
Lo, JTH [1 ]
机构
[1] Univ Maryland, Dept Math & Stat, Baltimore, MD 21228 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The standard risk-sensitive (or exponential quadratic) functional used for robust control and filtering for linear systems is generalized. It is then shown that under relatively mild conditions, a function can be approximated, to any desired degree of accuracy with respect to these general risk-sensitive functionals, by a multilayer perceptron or a radial basis function network.
引用
收藏
页码:1311 / 1314
页数:4
相关论文
共 50 条
  • [31] Can neural nets be universal approximators for fuzzy functions?
    Buckley, JJ
    Hayashi, Y
    PROCEEDINGS OF THE SIXTH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS I - III, 1997, : 1101 - 1104
  • [32] Uncertainty of data, fuzzy membership functions, and multilayer perceptrons
    Duch, W
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2005, 16 (01): : 10 - 23
  • [33] Classification methodologies of multilayer perceptrons with sigmoid activation functions
    Gao, DQ
    Ji, Y
    PATTERN RECOGNITION, 2005, 38 (10) : 1469 - 1482
  • [34] On variable sizes and sigmoid activation functions of multilayer perceptrons
    Gao, DQ
    Liu, H
    Li, CW
    PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS 2003, VOLS 1-4, 2003, : 2017 - 2022
  • [35] A Robust Meshless Method with QR-Decomposed Radial Basis Functions
    Yang, Shunchuan
    Chen, Zhizhang
    Yu, Yiqiang
    Ponomarenko, Sergey
    2015 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM (IMS), 2015,
  • [36] Radial Basis Functions
    Giesl, Peter
    CONSTRUCTION OF GLOBAL LYAPUNOV FUNCTIONS USING RADIAL BASIS FUNCTIONS, 2007, 1904 : 61 - 98
  • [37] Nonlinear robust control of Cuk converter using radial basis functions
    Medagam, Peda
    Pourboghrat, Farzad
    2006 38TH ANNUAL NORTH AMERICAN POWER SYMPOSIUM, NAPS-2006 PROCEEDINGS, 2006, : 229 - +
  • [38] Experimental design of supervisory control functions based on multilayer perceptrons
    Kukolj, Dragan D.
    Berko-Pusic, Miroslava T.
    Atlagic, Branislav
    Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM, 2001, 15 (05): : 425 - 431
  • [39] Training multilayer perceptrons via minimization of sum of ridge functions
    Wu, W
    Feng, GR
    Li, X
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2002, 17 (04) : 331 - 347
  • [40] On the transformation mechanisms of multilayer perceptrons with sigmoid activation functions for classifications
    Gao, DQ
    Zhu, HJ
    Nie, GP
    PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS 2003, VOLS 1-4, 2003, : 1173 - 1178