On Numerical Energy Conservation by the Split-step Fourier Method for the Nonlinear Schrodinger Equation

被引:1
|
作者
Gauckler, Ludwig [1 ]
机构
[1] Tech Univ Berlin, Inst Math, Str 17 Juni 136, D-10623 Berlin, Germany
来源
PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2015 (ICNAAM-2015) | 2016年 / 1738卷
关键词
Nonlinear Schrodinger equation; split-step Fourier method; long time intervals; conservation of energy;
D O I
10.1063/1.4951748
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The near-conservation of energy on long time intervals in numerical discretizations of Hamiltonian partial differential equations is discussed using the cubic nonlinear Schrodinger equation and its discretization by the split-step Fourier method as a model problem.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] A SPLIT-STEP PADE SOLUTION FOR THE PARABOLIC EQUATION METHOD
    COLLINS, MD
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1993, 93 (04): : 1736 - 1742
  • [42] On the Accuracy of Split-Step Fourier Simulations for Wideband Nonlinear Optical Communications
    Musetti, Simone
    Serena, Paolo
    Bononi, Alberto
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2018, 36 (23) : 5669 - 5677
  • [43] Split-step Fourier transform method in modeling of pulse propagation in dispersive nonlinear optical fibers
    Aleshams, M
    Zarifkar, A
    Sheikhi, MH
    CAOL 2005: PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON ADVANCED OPTOELECTRONICS AND LASERS, VOL 2, 2005, : 124 - 126
  • [44] Numerical long-time energy conservation for the nonlinear Schrodinger equation
    Gauckler, Ludwig
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2017, 37 (04) : 2067 - 2090
  • [45] Solving Coupled Nonlinear Schrodinger Equations Based on the Discrete Split-Step Multi-Wavelet Method
    Tao, Q.
    Luo, F-G.
    Wan, Z-W.
    Liang, Q-L.
    Song, X-M.
    Liu, X-C.
    LASERS IN ENGINEERING, 2011, 21 (5-6) : 387 - 395
  • [46] A compact split-step finite difference method for solving the nonlinear Schrodinger equations with constant and variable coefficients
    Dehghan, Mehdi
    Taleei, Ameneh
    COMPUTER PHYSICS COMMUNICATIONS, 2010, 181 (01) : 43 - 51
  • [47] Limiting Accuracy of Solving the Two-Dimensional Parabolic Equation by the Split-Step Fourier Transform Method
    A. V. Mogilnikov
    Yu. P. Akulinichev
    Russian Physics Journal, 2021, 64 : 50 - 57
  • [48] Range-dynamical low-rank split-step Fourier method for the parabolic wave equation
    Charous, Aaron
    Lermusiaux, Pierre F. J.
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2024, 156 (04): : 2903 - 2920
  • [49] Limiting Accuracy of Solving the Two-Dimensional Parabolic Equation by the Split-Step Fourier Transform Method
    Mogilnikov, A., V
    Akulinichev, Yu P.
    RUSSIAN PHYSICS JOURNAL, 2021, 64 (01) : 50 - 57
  • [50] Range-dynamical low-rank split-step Fourier method for the parabolic wave equation
    Charous, Aaron
    Lermusiaux, Pierre F. J.
    Journal of the Acoustical Society of America, 1600, 156 (04): : 2903 - 2920