On Numerical Energy Conservation by the Split-step Fourier Method for the Nonlinear Schrodinger Equation

被引:1
|
作者
Gauckler, Ludwig [1 ]
机构
[1] Tech Univ Berlin, Inst Math, Str 17 Juni 136, D-10623 Berlin, Germany
关键词
Nonlinear Schrodinger equation; split-step Fourier method; long time intervals; conservation of energy;
D O I
10.1063/1.4951748
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The near-conservation of energy on long time intervals in numerical discretizations of Hamiltonian partial differential equations is discussed using the cubic nonlinear Schrodinger equation and its discretization by the split-step Fourier method as a model problem.
引用
收藏
页数:4
相关论文
共 50 条
  • [11] SPLIT-STEP METHODS FOR THE SOLUTION OF THE NONLINEAR SCHRODINGER-EQUATION
    WEIDEMAN, JAC
    HERBST, BM
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1986, 23 (03) : 485 - 507
  • [12] SPLIT-STEP SPECTRAL METHOD FOR NONLINEAR SCHRODINGER-EQUATION WITH CONSTANT BACKGROUND INTENSITIES
    GEISLER, T
    CHRISTIANSEN, PL
    MORK, J
    RAMANUJAM, PS
    JOURNAL OF COMPUTATIONAL PHYSICS, 1990, 86 (02) : 492 - 495
  • [13] On the split-step method for the solution of nonlinear Schrodinger equation with the Riesz space fractional derivative
    Mohebbi, Akbar
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2016, 4 (01): : 54 - 69
  • [14] A split-step finite difference method for nonparaxial nonlinear Schrodinger equation at critical dimension
    Malakuti, Kamyar
    Parilov, Evgueni
    APPLIED NUMERICAL MATHEMATICS, 2011, 61 (07) : 891 - 899
  • [15] Parallel split-step Fourier methods for the coupled nonlinear Schrodinger type equations
    Taha, TR
    Xu, XM
    JOURNAL OF SUPERCOMPUTING, 2005, 32 (01): : 5 - 23
  • [16] Numerical study of nonlinear Schrodinger equation with high-order split-step corrected smoothing particle hydrodynamics method
    Jiang Tao
    Huang Jin-Jing
    Lu Lin-Guang
    Ren Jin-Lian
    ACTA PHYSICA SINICA, 2019, 68 (09)
  • [17] MODIFIED ENERGY FOR SPLIT-STEP METHODS APPLIED TO THE LINEAR SCHRODINGER EQUATION
    Debussche, Arnaud
    Faou, Erwan
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (05) : 3705 - 3719
  • [18] Solving nonlinear Schrodinger equation based on discrete split-step multi-wavelet method
    Tao, Qing
    Luo, Fengguang
    Hu, Jian
    Cai, Dusi
    Bie, Fanhu
    Cao, Lei
    Guan, Jian
    OPTIK, 2011, 122 (15): : 1329 - 1331
  • [19] COMPRESSIVE SPLIT-STEP FOURIER METHOD
    Bayindir, C.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2015, 5 (02): : 298 - 306
  • [20] Higher-order split-step schemes for the generalized nonlinear Schrodinger equation
    Muslu, GM
    Erbay, HA
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, PROCEEDINGS, 2004, : 658 - 667