A BAYESIAN GENERATIVE MODEL WITH GAUSSIAN PROCESS PRIORS FOR THERMOMECHANICAL ANALYSIS OF MICRO-RESONATORS

被引:0
|
作者
Vording, Maximillian F. [1 ,2 ,3 ]
Okeyo, Peter O. [2 ,3 ,4 ]
Guillamon, Juan J. R. [1 ,2 ,3 ]
Larsen, Peter E. [2 ,3 ]
Schmidt, Mikkel N. [1 ]
Alstom, Tommy S. [1 ,2 ,3 ]
机构
[1] Tech Univ Denmark, DTU, Dept Appl Math & Comp Sci, Richard Petersens Plads 321, DK-2800 Lyngby, Denmark
[2] Tech Univ Denmark, Danish Natl Res Fdn, DK-2800 Lyngby, Denmark
[3] Tech Univ Denmark, Dept Hlth Technol, Villum Fdn Ctr Intelligent Drug Delivery & Sensin, DK-2800 Lyngby, Denmark
[4] Univ Copenhagen, Dep Pharm, Univ Pk 2, DK-2100 Copenhagen, Denmark
关键词
Bayesian learning and modeling; Gaussian processes; drug characterisation; thermomechanical analysis;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Thermal analysis using resonating micro-electromechanical systems shows great promise in characterizing materials in the early stages of research. Through thermal cycles and actuation using a piezoelectric speaker, the resonant behaviour of a model drug, theophylline monohydrate, is measured across the surface whilst using a laser-Doppler vibrometer for readout. Acquired is a sequence of spectra that are strongly correlated in time, temperature and spatial location of the readout. Traditionally, each spectrum is analyzed individually to locate the resonance peak. We propose a Bayesian model using a warped Gaussian process prior taking the correlations into account and demonstrate on both synthetic and experimental data, that it yields better estimates of both location and amplitude of the resonance peak. Thus, the proposed model can give a more precise characterization of drugs, which is important in drug discovery and development.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Improving Bayesian radiological profiling of waste drums using Dirichlet priors, Gaussian process priors, and hierarchical modeling
    Laloy, Eric
    Rogiers, Bart
    Bielen, An
    Borella, Alessandro
    Boden, Sven
    APPLIED RADIATION AND ISOTOPES, 2023, 194
  • [22] Analysis and optimization of acoustic wave micro-resonators integrating piezoelectric zinc oxide layers
    Mortada, O.
    Zahr, A. H.
    Orlianges, J. -C.
    Crunteanu, A.
    Chatras, M.
    Blondy, P.
    JOURNAL OF APPLIED PHYSICS, 2017, 121 (07)
  • [24] A Bayesian Semiparametric Item Response Model with Dirichlet Process Priors
    Miyazaki, Kei
    Hoshino, Takahiro
    PSYCHOMETRIKA, 2009, 74 (03) : 375 - 393
  • [25] A Bayesian Semiparametric Item Response Model with Dirichlet Process Priors
    Kei Miyazaki
    Takahiro Hoshino
    Psychometrika, 2009, 74 : 375 - 393
  • [26] How to Choose Priors for Bayesian Estimation of the Discovery Process Model
    Jingzhen Xu
    Richard Sinding-Larsen
    Natural Resources Research, 2005, 14 (3) : 211 - 233
  • [27] STATISTICAL GUARANTEES FOR BAYESIAN UNCERTAINTY QUANTIFICATION IN NONLINEAR INVERSE PROBLEMS WITH GAUSSIAN PROCESS PRIORS
    Monard, Francois
    Nickl, Richard
    Paternain, Gabriel P.
    ANNALS OF STATISTICS, 2021, 49 (06): : 3255 - 3298
  • [28] Efficient Bayesian shape-restricted function estimation with constrained Gaussian process priors
    Pallavi Ray
    Debdeep Pati
    Anirban Bhattacharya
    Statistics and Computing, 2020, 30 : 839 - 853
  • [29] Bayesian Active Learning of Neural Firing Rate Maps with Transformed Gaussian Process Priors
    Park, Mijung
    Weller, J. Patrick
    Horwitz, Gregory D.
    Pillow, Jonathan W.
    NEURAL COMPUTATION, 2014, 26 (08) : 1519 - 1541
  • [30] Bayesian regression and classification using Gaussian process priors indexed by probability density functions
    Fradi, A.
    Feunteun, Y.
    Samir, C.
    Baklouti, M.
    Bachoc, F.
    Loubes, J-M
    INFORMATION SCIENCES, 2021, 548 : 56 - 68