Slow passage through a homoclinic orbit with subharmonic resonances

被引:2
|
作者
Brothers, JD
Haberman, R [1 ]
机构
[1] So Methodist Univ, Dept Math, Dallas, TX 75275 USA
[2] Raytheon Co, E Syst, Lexington, MA 02173 USA
关键词
D O I
10.1111/1467-9590.00091
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The slow passage through a homoclinic orbit is analyzed for a periodically forced and weakly damped strongly nonlinear oscillator corresponding to a double-well potential. Multiphase averaging fails at an infinite sequence of subharmonic resonance layers that coalesce on the homoclinic orbit. An accurate phase of the strongly nonlinear oscillator after passage through each subharmonic resonance is obtained using a time shift and a constant phase adjustment. Near the unperturbed homoclinic orbit, the solution is a large sequence of nearly homoclinic orbits in which one saddle approach is mapped into the next. The method of matched asymptotic expansions is used to relate the solution in subharmonic resonance layers to the solution near the unperturbed homoclinic orbit. In this way, we determine an asymptotically accurate analytic description for the boundaries of the basins of attraction corresponding to capture into each well.
引用
收藏
页码:211 / 232
页数:22
相关论文
共 50 条
  • [31] The Dynamical Core of a Homoclinic Orbit
    Mendoza, Valentin
    REGULAR & CHAOTIC DYNAMICS, 2022, 27 (04): : 477 - 491
  • [32] A HOMOCLINIC ORBIT FOR LAGRANGIAN SYSTEMS
    WU Shaoping (Department of Mathematics
    Systems Science and Mathematical Sciences, 1995, (01) : 75 - 81
  • [33] Homoclinic orbit to a center manifold
    Bernard, P
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2003, 17 (02) : 121 - 157
  • [34] Multiple transverse homoclinic solutions near a degenerate homoclinic orbit
    Lin, Xiao-Biao
    Long, Bin
    Zhu, Changrong
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (01) : 1 - 24
  • [35] Slow Passage through Multiple Parametric Resonance Tongues
    Bridge, Jacqueline
    Rand, Richard
    Sah, Si Mohamed
    JOURNAL OF VIBRATION AND CONTROL, 2009, 15 (10) : 1581 - 1600
  • [36] Slow passage through resonance in Mathieu's equation
    Ng, L
    Rand, R
    O'Neil, M
    JOURNAL OF VIBRATION AND CONTROL, 2003, 9 (06) : 685 - 707
  • [37] Slow passage through thresholds in quantum dot lasers
    Viktorov, E. A.
    Erneux, T.
    Kolykhalova, E. D.
    Dudelev, V. V.
    Danckaert, J.
    Soboleva, K. K.
    Deryagin, A. G.
    Novikov, I. I.
    Maximov, M. V.
    Zhukov, A. E.
    Ustinov, V. M.
    Kuchinskii, V. I.
    Sibbett, W.
    Rafailov, E. U.
    Sokolovskii, G. S.
    PHYSICAL REVIEW E, 2016, 94 (05)
  • [38] Slow Passage through a Saddle-Center Bifurcation
    D. C. Diminnie
    R. Haberman
    Journal of Nonlinear Science, 2000, 10 : 197 - 221
  • [39] Slow passage through a saddle-center bifurcation
    Diminnie, DC
    Haberman, R
    JOURNAL OF NONLINEAR SCIENCE, 2000, 10 (02) : 197 - 221
  • [40] Control of Ultra- and Subharmonic Resonances
    M. M. Fyrillas
    A. J. Szeri
    Journal of Nonlinear Science, 1998, 8 : 131 - 159