Slow passage through resonance in Mathieu's equation

被引:12
|
作者
Ng, L [1 ]
Rand, R [1 ]
O'Neil, M [1 ]
机构
[1] Cornell Univ, Dept Theoret & Appl Mech, Ithaca, NY 14853 USA
关键词
resonance; Mathieu equation; amplification; parametric excitation;
D O I
10.1177/107754603029581
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
We investigate slow passage through the 2:1 resonance tongue in Mathieu's equation. Using numerical integration, we find that amplification or de-amplification can occur. The amount of amplification (or de-amplification) depends on the speed of travel through the tongue and the initial conditions. We use the method of multiple scales to obtain a slow flow approximation. The Wentzel-Kramers-Brillouin (WKB) method is then applied to the slow flow equations to obtain an analytic approximation.
引用
收藏
页码:685 / 707
页数:23
相关论文
共 50 条
  • [1] Slow passage through resonance
    Park, Youngyong
    Do, Younghae
    Lopez, Juan M.
    PHYSICAL REVIEW E, 2011, 84 (05):
  • [2] Comment on "Slow passage through resonance"
    Bourquard, Claire
    Noiray, Nicolas
    PHYSICAL REVIEW E, 2019, 100 (04)
  • [3] Cauchy Problem for Mathieu's Equation at Parametric Resonance
    Kurin, A. F.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2008, 48 (04) : 600 - 617
  • [4] Cauchy problem for Mathieu’s equation at parametric resonance
    A. F. Kurin
    Computational Mathematics and Mathematical Physics, 2008, 48 : 600 - 617
  • [5] Resonance simulation of the coupled nonlinear Mathieu's equation
    El-Dib, Yusry O.
    Alrowaily, Albandari W.
    Tiofack, C. G. L.
    El-Tantawy, S. A.
    AIP ADVANCES, 2023, 13 (08)
  • [6] Slow Passage through Multiple Parametric Resonance Tongues
    Bridge, Jacqueline
    Rand, Richard
    Sah, Si Mohamed
    JOURNAL OF VIBRATION AND CONTROL, 2009, 15 (10) : 1581 - 1600
  • [7] Resonance in the quasiperiodic Mathieu equation
    Rand, Richard
    Morrison, Tina
    Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol 6, Pts A-C, 2005, : 711 - 718
  • [8] Accurate phase after slow passage through subharmonic resonance
    Brothers, JD
    Haberman, R
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1998, 59 (01) : 347 - 364
  • [9] Slow passage through resonance for a weakly nonlinear dispersive wave
    Glebov, S
    Kiselev, O
    Lazarev, V
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2005, 65 (06) : 2158 - 2177
  • [10] Resonance regions of extended Mathieu equation
    Semyonov, V. P.
    Timofeev, A. V.
    INTERNATIONAL CONFERENCE ON COMPUTER SIMULATION IN PHYSICS AND BEYOND 2015, 2016, 681