Slow passage through resonance in Mathieu's equation

被引:12
|
作者
Ng, L [1 ]
Rand, R [1 ]
O'Neil, M [1 ]
机构
[1] Cornell Univ, Dept Theoret & Appl Mech, Ithaca, NY 14853 USA
关键词
resonance; Mathieu equation; amplification; parametric excitation;
D O I
10.1177/107754603029581
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
We investigate slow passage through the 2:1 resonance tongue in Mathieu's equation. Using numerical integration, we find that amplification or de-amplification can occur. The amount of amplification (or de-amplification) depends on the speed of travel through the tongue and the initial conditions. We use the method of multiple scales to obtain a slow flow approximation. The Wentzel-Kramers-Brillouin (WKB) method is then applied to the slow flow equations to obtain an analytic approximation.
引用
收藏
页码:685 / 707
页数:23
相关论文
共 50 条
  • [21] On certain solutions of Mathieu's equation
    Jeffreys, H
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1925, 23 : 437 - 448
  • [22] Approximate solutions to Mathieu's equation
    Wilkinson, Samuel A.
    Vogt, Nicolas
    Golubev, Dmitry S.
    Cole, Jared H.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2018, 100 : 24 - 30
  • [23] Vibrational Control of Mathieu's Equation
    Wickramasinghe, I. P. M.
    Berg, Jordan M.
    2013 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM): MECHATRONICS FOR HUMAN WELLBEING, 2013, : 686 - 691
  • [24] Subharmonic resonance in the non-linear Mathieu equation
    Zounes, RS
    Rand, RH
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2002, 37 (01) : 43 - 73
  • [25] 2:1 Resonance in the delayed nonlinear Mathieu equation
    Morrison, Tina M.
    Rand, Richard H.
    NONLINEAR DYNAMICS, 2007, 50 (1-2) : 341 - 352
  • [26] Solutions of Mathieu's equation - I
    Brainerd, JG
    Weygandt, CN
    PHILOSOPHICAL MAGAZINE, 1940, 30 (203): : 458 - 477
  • [27] 2:2:1 resonance in the quasiperiodic Mathieu equation
    Rand, R
    Guennoun, K
    Belhaq, M
    NONLINEAR DYNAMICS, 2003, 31 (04) : 367 - 374
  • [28] Slow passage through canard explosion and mixed-mode oscillations in the forced Van der Pol's equation
    Han, Xiujing
    Bi, Qinsheng
    NONLINEAR DYNAMICS, 2012, 68 (1-2) : 275 - 283
  • [29] Slow passage through canard explosion and mixed-mode oscillations in the forced Van der Pol’s equation
    Xiujing Han
    Qinsheng Bi
    Nonlinear Dynamics, 2012, 68 : 275 - 283
  • [30] Slow passage through a pitchfork bifurcation
    Maree, GJM
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1996, 56 (03) : 889 - 918