Homogenization of a Ginzburg-Landau model for a nematic liquid crystal with inclusions

被引:13
|
作者
Berlyand, L
Cioranescu, D
Golovaty, D [1 ]
机构
[1] Univ Akron, Dept Theoret & Appl Math, Akron, OH 44325 USA
[2] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[3] Univ Paris 06, Lab Jacques Louis Lions, F-75252 Paris 05, France
来源
基金
美国国家科学基金会;
关键词
liquid crystals; Ginzburg-Landau models; homogenization in perforated media; method of mesocharacteristics;
D O I
10.1016/j.matpur.2004.09.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a nonlinear homogenization problem for a Ginzburg-Landau functional with a (positive or negative) surface energy term describing a nematic liquid crystal with inclusions. Assuming that inclusions are separated by distances of the same order E as their size, we find a limiting functional as 8 approaches zero. We generalize the variational method of mesocharacteristics to show that a corresponding homogenized problem for arbitrary, periodic or non-periodic geometries is described by an anisotropic Ginzburg-Landau functional. We obtain computational formulas for material characteristics of an effective medium. As a byproduct of our analysis, we show that the limiting functional is a F-limit of a sequence of Ginzburg-Landau functionals. Furthermore, we prove that a cross-term corresponding to interactions between the bulk and the surface energy terms does not appear at the leading order in the homogenized limit. (C) 2004 Elsevier SAS. All rights reserved.
引用
收藏
页码:97 / 136
页数:40
相关论文
共 50 条
  • [31] Two-parameter homogenization for a Ginzburg-Landau problem in a perforated domain
    Berlyand, Leonid
    Mironescu, Petru
    NETWORKS AND HETEROGENEOUS MEDIA, 2008, 3 (03) : 461 - 487
  • [32] ON THE GINZBURG-LANDAU EQUATIONS
    CARROLL, RW
    GLICK, AJ
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1964, 16 (05) : 373 - 384
  • [33] THE GINZBURG-LANDAU EQUATION
    ADOMIAN, G
    MEYERS, RE
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1995, 29 (03) : 3 - 4
  • [34] Simple Ginzburg-Landau theory for vortices in a crystal lattice
    Yeo, J
    Moore, MA
    PHYSICAL REVIEW LETTERS, 1997, 78 (23) : 4490 - 4493
  • [35] Vortex analysis of the periodic Ginzburg-Landau model
    Aydi, Hassen
    Sandier, Etienne
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (04): : 1223 - 1236
  • [36] Knot solitons in a modified Ginzburg-Landau model
    Jaeykkae, Juha
    Palmu, Joonatan
    PHYSICAL REVIEW D, 2011, 83 (10):
  • [37] Incommensurateness effects in a lattice Ginzburg-Landau model
    E. S. Babaev
    S. A. Ktitorov
    Physics of the Solid State, 1997, 39 : 1024 - 1027
  • [38] Breaking of Ginzburg-Landau description in the temperature dependence of the anisotropy in a nematic superconductor
    Bannikov, M., I
    Akzyanov, R. S.
    Zhurbina, N. K.
    Khaldeev, S., I
    Selivanov, Yu G.
    Zavyalov, V. V.
    Rakhmanov, A. L.
    Kuntsevich, A. Yu
    PHYSICAL REVIEW B, 2021, 104 (22)
  • [39] Ginzburg-Landau energy
    不详
    AMERICAN MATHEMATICAL MONTHLY, 2007, 114 (02): : 168 - 170
  • [40] Vortex analysis in the Ginzburg-Landau model of superconductivity
    Sandier, E
    Serfaty, S
    NONLINEAR PDE'S IN CONDENSED MATTER AND REACTIVE FLOWS, 2002, 569 : 491 - 506