Homogenization of a Ginzburg-Landau model for a nematic liquid crystal with inclusions

被引:13
|
作者
Berlyand, L
Cioranescu, D
Golovaty, D [1 ]
机构
[1] Univ Akron, Dept Theoret & Appl Math, Akron, OH 44325 USA
[2] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[3] Univ Paris 06, Lab Jacques Louis Lions, F-75252 Paris 05, France
来源
基金
美国国家科学基金会;
关键词
liquid crystals; Ginzburg-Landau models; homogenization in perforated media; method of mesocharacteristics;
D O I
10.1016/j.matpur.2004.09.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a nonlinear homogenization problem for a Ginzburg-Landau functional with a (positive or negative) surface energy term describing a nematic liquid crystal with inclusions. Assuming that inclusions are separated by distances of the same order E as their size, we find a limiting functional as 8 approaches zero. We generalize the variational method of mesocharacteristics to show that a corresponding homogenized problem for arbitrary, periodic or non-periodic geometries is described by an anisotropic Ginzburg-Landau functional. We obtain computational formulas for material characteristics of an effective medium. As a byproduct of our analysis, we show that the limiting functional is a F-limit of a sequence of Ginzburg-Landau functionals. Furthermore, we prove that a cross-term corresponding to interactions between the bulk and the surface energy terms does not appear at the leading order in the homogenized limit. (C) 2004 Elsevier SAS. All rights reserved.
引用
收藏
页码:97 / 136
页数:40
相关论文
共 50 条
  • [21] GINZBURG-LANDAU MODEL FOR A RANDOM MAGNET
    CREMER, S
    SIMANEK, E
    PHYSICAL REVIEW B, 1977, 16 (03): : 1270 - 1277
  • [22] AN ASYMPTOTIC ESTIMATE FOR THE GINZBURG-LANDAU MODEL
    STRUWE, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1993, 317 (07): : 677 - 680
  • [23] Landau-de Gennes model of liquid crystals with small Ginzburg-Landau parameter
    Pan, XB
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2006, 37 (05) : 1616 - 1648
  • [24] On the existence of nematic-superconducting states in the Ginzburg-Landau regime
    De Leo, Mariano
    Borgna, Juan Pablo
    Ovalle, Diego Garcia
    CHAOS SOLITONS & FRACTALS, 2024, 179
  • [26] A thermodynamically consistent Ginzburg-Landau model for superfluid transition in liquid helium
    Berti, Alessia
    Berti, Valeria
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2013, 64 (04): : 1387 - 1397
  • [27] Symmetry Breaking and Restoration in the Ginzburg–Landau Model of Nematic Liquid Crystals
    Marcel G. Clerc
    Michał Kowalczyk
    Panayotis Smyrnelis
    Journal of Nonlinear Science, 2018, 28 : 1079 - 1107
  • [28] Homogenization of a Ginzburg-Landau problem in a perforated domain with mixed boundary conditions
    Luisa Faella
    Carmen Perugia
    Boundary Value Problems, 2014
  • [29] HOMOGENIZATION OF TRAJECTORY ATTRACTORS OF GINZBURG-LANDAU EQUATIONS WITH RANDOMLY OSCILLATING TERMS
    Chechkin, Gregory A.
    Chepyzhov, Vladimir V.
    Pankratov, Leonid S.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (03): : 1133 - 1154
  • [30] Homogenization of a Ginzburg-Landau problem in a perforated domain with mixed boundary conditions
    Faella, Luisa
    Perugia, Carmen
    BOUNDARY VALUE PROBLEMS, 2014, : 1 - 28