14.2 W/mm internally-matched AlGaN/GaN HEMT for X-band applications

被引:13
|
作者
Peng, M. Z. [1 ]
Zheng, Y. K. [1 ]
Luo, W. J. [1 ]
Liu, X. Y. [1 ]
机构
[1] Chinese Acad Sci, Inst Microelect, Key Lab Microelect Devices & Integrated Technol, Beijing 100029, Peoples R China
关键词
AlGaN/GaN HEMT; Internally-matched; Power density; X-band;
D O I
10.1016/j.sse.2011.07.009
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
High-performance X-band AlGaN/GaN high electron mobility transistor (HEMT) has been achieved by Gamma-gate process in combination with source-connected field plate. Both its Schottky breakdown voltage and pinch-off breakdown voltage are higher than 100 V. Beside, excellent superimposition of direct current (DC) I-V characteristics in different V-ds sweep range indicates that our GaN HEMT device is almost current collapse free. As a result, both outstanding breakdown characteristics and reduction of current collapse effect guarantee high microwave power performances. Based upon it, we have developed an internally-matched GaN HEMT amplifier with single chip of 2.5 mm gate periphery, which exhibits power density of 14.2 W/mm with 45.5 dBm (35.5W) output power and a power added efficiency (PAE) of 48% under V-ds = 48 V pulse operating condition at 8 GHz. To the best of our knowledge, it is the highest power density at this power level. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:63 / 66
页数:4
相关论文
共 50 条
  • [21] A Broadband and Transient-Accurate AlGaN/GaN HEMT SPICE Model for X-Band RF Applications
    Dangi, Raghvendra
    Pampori, Ahtisham
    Pal, Praveen
    Nazir, Mohammad Sajid
    Kushwaha, Pragya
    Chauhan, Yogesh Singh
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2024, 71 (12) : 7390 - 7397
  • [22] Internally-matched GaN HEMT High Efficiency Power Amplifier for Space Solar Power Stations
    Yamanaka, K.
    Tuyama, Y.
    Ohtsuka, H.
    Chaki, S.
    Nakayama, M.
    Hirano, Y.
    2010 ASIA-PACIFIC MICROWAVE CONFERENCE, 2010, : 119 - 122
  • [23] A C-Band Internally-Matched High Efficiency GaN Power Amplifier
    Ma Xiao-Hua
    Wei Jia-Xing
    Cao Meng-Yi
    Lu Yang
    Zhao Bo-Chao
    Dong Liang
    Wang Yi
    Hao Yue
    CHINESE PHYSICS LETTERS, 2014, 31 (10)
  • [24] Modeling of Bonding Wires Array and Its Application in the Design of a 120 W X-band Internally Matched AlGaN/GaN Power Amplifier<bold> </bold>
    Gu, L.
    Tang, S.
    Xu, Y.
    Yang, Y.
    Chen, T.
    PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS (ICEAA), 2016, : 463 - 465
  • [25] X-band high-power microstrip AlGaN/GaN HEMT amplifier MMICs
    van Raay, F.
    Quay, R.
    Kiefer, R.
    Bronner, W.
    Seelmann-Eggebert, M.
    Schlechtweg, M.
    Mikulla, M.
    Weimann, G.
    2006 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST, VOLS 1-5, 2006, : 1368 - +
  • [26] A Single-Ended Resistive X-Band AlGaN/GaN HEMT MMIC Mixer
    Sudow, Mattias
    Andersson, Kristoffer
    Fagerlind, Martin
    Thorsell, Mattias
    Nilsson, Per-Ake
    Rorsman, Niklas
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2008, 56 (10) : 2201 - 2206
  • [27] Scalable GaN-HEMT Model for X-band RF Applications
    Pal, Praveen
    Dangi, Raghvendra
    Nazir, Mohammad Sajid
    Kumari, Purnima
    Goyal, Umakant
    Kumar, Sudhir
    Singh, Poonam
    Mishra, Meena
    Chauhan, Yogesh Singh
    8TH IEEE ELECTRON DEVICES TECHNOLOGY & MANUFACTURING CONFERENCE, EDTM 2024, 2024, : 475 - 477
  • [28] Single-Chip L-Band 1500W Internally AlGaN/GaN HEMT
    Zhong, Shichang
    Chen, Tangsheng
    Yin, Xiaoxing
    Tang, Shijun
    Zhou, Shutong
    PROCEEDINGS OF THE 2019 IEEE ASIA-PACIFIC MICROWAVE CONFERENCE (APMC), 2019, : 965 - 967
  • [29] A 9.5-10.5GHz 60W AlGaN/GaN HEMT for X-band high power application
    Yamamoto, T.
    Mitani, E.
    Inoue, K.
    Nishi, M.
    Sano, S.
    2007 EUROPEAN MICROWAVE INTEGRATED CIRCUITS CONFERENCE, VOLS 1 AND 2, 2007, : 45 - 47
  • [30] A Ku-band 3.4 W/mm power AlGaN/GaN HEMT on a sapphire substrate
    Wang Dongfang
    Chen Xiaojuan
    Liu Xinyu
    JOURNAL OF SEMICONDUCTORS, 2010, 31 (02)