A partially linear single-index transformation model and its nonparametric estimation

被引:5
|
作者
Ding, Xiaobo [1 ,2 ,3 ]
Zhou, Xiao-Hua [2 ,3 ]
Wang, Qihua [1 ,4 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R China
[2] Vet Affairs Puget Sound Hlth Care Syst, HSR& Ctr Excellence, Seattle, WA 98108 USA
[3] Univ Washington, Dept Biostat, Seattle, WA 98195 USA
[4] Shenzhen Univ, Inst Stat Sci, Shenzhen, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Basis function; Cross validation; linear inequality restriction; local linear regression; minimum average variance estimation; SEMIPARAMETRIC ESTIMATION; DIMENSION REDUCTION; REGRESSION-MODEL;
D O I
10.1002/cjs.11239
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we consider the nonparametric estimation of the partially linear single-index transformation model, where the transformation function, single-index function and error distribution are all completely unknown. We first use the minimum average variance estimation method to estimate the regression coefficients, and then propose a new incorporated local linear regression estimator for the derivative function of the single-index function. Accordingly by integration we can obtain the estimator of the single-index function. Finally we propose a constrained least square estimator for the transformation function, where basis function approximation is employed and cross validation method is proposed to select suitable sets of basis functions. Asymptotical properties of the estimators are established. Simulation studies show that our proposed estimators work well. A real-world data analysis of total health care charges was used to illustrate the proposed procedure. The Canadian Journal of Statistics 43: 97-117; 2015 (c) 2015 Statistical Society of Canada Resume Les auteurs traitent de l'estimation non parametrique du modele de transformation partiellement lineaire a un indice dans le cas oU la transformation, la fonction d'indice et la distribution de l'erreur sont toutes completement inconnues. Ils estiment d'abord les coefficients de regression par la methode de la variance moyenne minimale, puis ils proposent un nouvel estimateur local de regression lineaire pour la derivee de la fonction d'indice, menant a l'estimation de cette fonction par integration. Finalement, ils proposent un estimateur aux moindres carres avec contraintes pour la fonction de transformation dont une approximation est effectuee a l'aide de fonctions de base, elles-memes selectionnees par une procedure de validation croisee. Les auteurs etablissent les proprietes asymptotiques de leurs estimateurs et montrent a l'aide de simulations que ceux-ci donnent de bons resultats. Ils illustrent egalement leur methode en analysant un jeu de donnees reelles portant sur les couts des soins de sante. La revue canadienne de statistique 43: 97-117; 2015 (c) 2015 Societe statistique du Canada
引用
收藏
页码:97 / 117
页数:21
相关论文
共 50 条
  • [41] On extended partially linear single-index models
    Xia, YC
    Tong, H
    Li, WK
    BIOMETRIKA, 1999, 86 (04) : 831 - 842
  • [42] Separation of linear and index covariates in partially linear single-index models
    Lian, Heng
    Liang, Hua
    JOURNAL OF MULTIVARIATE ANALYSIS, 2016, 143 : 56 - 70
  • [43] NONPARAMETRIC MODEL CHECKS OF SINGLE-INDEX ASSUMPTIONS
    Maistre, Samuel
    Patilea, Valentin
    STATISTICA SINICA, 2019, 29 (01) : 113 - 138
  • [44] A SINGLE-INDEX QUANTILE REGRESSION MODEL AND ITS ESTIMATION
    Kong, Efang
    Xia, Yingcun
    ECONOMETRIC THEORY, 2012, 28 (04) : 730 - 768
  • [45] Empirical likelihood confidence regions in a partially linear single-index model
    Zhu, LX
    Xue, LG
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2006, 68 : 549 - 570
  • [46] Quantile regression of partially linear single-index model with missing observations
    Liang, Han-Ying
    Wang, Bao-Hua
    Shen, Yu
    STATISTICS, 2021, 55 (01) : 1 - 17
  • [47] Empirical likelihood in a partially linear single-index model with censored data
    Xue, Liugen
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2024, 193
  • [48] Estimation in Partially Linear Single-Index Panel Data Models With Fixed Effects
    Chen, Jia
    Gao, Jiti
    Li, Degui
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2013, 31 (03) : 315 - 330
  • [49] Variable selection and estimation for partially linear single-index models with longitudinal data
    Li, Gaorong
    Lai, Peng
    Lian, Heng
    STATISTICS AND COMPUTING, 2015, 25 (03) : 579 - 593
  • [50] NONPARAMETRIC INFERENCE FOR SINGLE-INDEX FUNCTION IN VARYING-COEFFICIENT SINGLE-INDEX MODEL
    Huang, Zhensheng
    Zhang, Riquan
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2009, 40 (02): : 87 - 111