A partially linear single-index transformation model and its nonparametric estimation

被引:5
|
作者
Ding, Xiaobo [1 ,2 ,3 ]
Zhou, Xiao-Hua [2 ,3 ]
Wang, Qihua [1 ,4 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R China
[2] Vet Affairs Puget Sound Hlth Care Syst, HSR& Ctr Excellence, Seattle, WA 98108 USA
[3] Univ Washington, Dept Biostat, Seattle, WA 98195 USA
[4] Shenzhen Univ, Inst Stat Sci, Shenzhen, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Basis function; Cross validation; linear inequality restriction; local linear regression; minimum average variance estimation; SEMIPARAMETRIC ESTIMATION; DIMENSION REDUCTION; REGRESSION-MODEL;
D O I
10.1002/cjs.11239
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we consider the nonparametric estimation of the partially linear single-index transformation model, where the transformation function, single-index function and error distribution are all completely unknown. We first use the minimum average variance estimation method to estimate the regression coefficients, and then propose a new incorporated local linear regression estimator for the derivative function of the single-index function. Accordingly by integration we can obtain the estimator of the single-index function. Finally we propose a constrained least square estimator for the transformation function, where basis function approximation is employed and cross validation method is proposed to select suitable sets of basis functions. Asymptotical properties of the estimators are established. Simulation studies show that our proposed estimators work well. A real-world data analysis of total health care charges was used to illustrate the proposed procedure. The Canadian Journal of Statistics 43: 97-117; 2015 (c) 2015 Statistical Society of Canada Resume Les auteurs traitent de l'estimation non parametrique du modele de transformation partiellement lineaire a un indice dans le cas oU la transformation, la fonction d'indice et la distribution de l'erreur sont toutes completement inconnues. Ils estiment d'abord les coefficients de regression par la methode de la variance moyenne minimale, puis ils proposent un nouvel estimateur local de regression lineaire pour la derivee de la fonction d'indice, menant a l'estimation de cette fonction par integration. Finalement, ils proposent un estimateur aux moindres carres avec contraintes pour la fonction de transformation dont une approximation est effectuee a l'aide de fonctions de base, elles-memes selectionnees par une procedure de validation croisee. Les auteurs etablissent les proprietes asymptotiques de leurs estimateurs et montrent a l'aide de simulations que ceux-ci donnent de bons resultats. Ils illustrent egalement leur methode en analysant un jeu de donnees reelles portant sur les couts des soins de sante. La revue canadienne de statistique 43: 97-117; 2015 (c) 2015 Societe statistique du Canada
引用
收藏
页码:97 / 117
页数:21
相关论文
共 50 条
  • [21] Estimation for partially linear single-index spatial autoregressive model with covariate measurement errors
    Wang, Ke
    Wang, Dehui
    STATISTICAL PAPERS, 2024, 65 (07) : 4201 - 4241
  • [22] Estimation of partially linear single-index additive hazards model with current status data
    Pordeli, Pooneh
    Lu, Xuewen
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2018, 88 (05) : 935 - 966
  • [23] Variable selection and semiparametric efficient estimation for the heteroscedastic partially linear single-index model
    Lai, Peng
    Wang, Qihua
    Zhou, Xiao-Hua
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 70 : 241 - 256
  • [24] Partially Linear Single-Index Model in the Presence of Measurement Error
    Lin, Hongmei
    Shi, Jianhong
    Tong, Tiejun
    Zhang, Riquan
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2022, 35 (06) : 2361 - 2380
  • [25] Partially linear single-index model with missing responses at random
    Lai, Peng
    Wang, Qihua
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (02) : 1047 - 1058
  • [26] Penalised spline estimation for generalised partially linear single-index models
    Yu, Yan
    Wu, Chaojiang
    Zhang, Yuankun
    STATISTICS AND COMPUTING, 2017, 27 (02) : 571 - 582
  • [27] Results concerning the generalized partially linear single-index model
    Kane, M
    Holt, J
    Allen, B
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2004, 74 (12) : 897 - 912
  • [28] Estimation and variable selection for quantile partially linear single-index models
    Zhang, Yuankun
    Lian, Heng
    Yu, Yan
    JOURNAL OF MULTIVARIATE ANALYSIS, 2017, 162 : 215 - 234
  • [29] A Comparative Study of Semiparametric Estimation in Partially Linear Single-index Models
    Kim, Young-Ju
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2016, 45 (07) : 2577 - 2585
  • [30] Partially Linear Single-Index Model in the Presence of Measurement Error
    LIN Hongmei
    SHI Jianhong
    TONG Tiejun
    ZHANG Riquan
    Journal of Systems Science & Complexity, 2022, 35 (06) : 2361 - 2380