Design, optimization, modeling and testing of a piezoelectric footwear energy harvester

被引:144
|
作者
Qian, Feng [1 ]
Xu, Tian-Bing [2 ]
Zuo, Lei [1 ]
机构
[1] Virginia Tech, Dept Mech Engn, Blacksburg, VA 24061 USA
[2] Old Dominion Univ, Dept Mech & Aerosp Engn, Norfolk, VA 23529 USA
关键词
Energy harvesting; Human walking; Force amplification frame; Piezoelectric stack; Biogeography-based optimization; BIOGEOGRAPHY-BASED OPTIMIZATION; BIOMECHANICAL ENERGY; TRIBOELECTRIC NANOGENERATOR; HUMAN MOTIONS; WALKING; ELECTRICITY; DEVICES; DRIVEN;
D O I
10.1016/j.enconman.2018.06.069
中图分类号
O414.1 [热力学];
学科分类号
摘要
A footwear harvester needs to fulfill both technical and practical functionalities, including but not limited to energy extracting and storage, easy implantation and durability. The very limited space in a shoe is the key challenge to the design of a footwear harvester. This paper presents the design, optimization, modeling and testing of an embedded piezoelectric footwear harvester for energy scavenging from human walking. A force amplification frame is designed and optimized to transmit and amplify the vertical heel-strike force to the inner piezoelectric stack deployed in the horizontal direction. Two heel-shaped aluminum plates are employed to gather and transfer the dynamic force over the heel to the sandwiched force amplification frames. The dynamic force at the heel is measured to design, optimize and simulate the piezoelectric footwear harvester. A numerical model is developed and validated to be capable of precisely predicting the electrical outputs of the harvester. Two prototypes, respectively including eight and six stacks, are fabricated and tested on a treadmill at different walking speeds and external resistances. The numerical simulations agree well with experiments. The harvester with fewer piezoelectric stacks could produce more power at the same walking speed and matched resistance. Experimental results manifest that the footwear harvesters with eight and six stacks, respectively, have 7 mW/shoe and 9 mW/shoe average power outputs at the walking speeds of 3.0 mph (4.8 km/h). Simulation results from the validated numerical model show that the harvester with four piezoelectric stacks could harvest 14 mW/shoe and 20 mW/shoe average power at 3.0 mph (4.8 km/h) and 3.5 mph (5.6 km/h), respectively.
引用
收藏
页码:1352 / 1364
页数:13
相关论文
共 50 条
  • [41] Design and Modeling of Piezoelectric Energy Harvester Under Variable Pressure in Pipe Flow
    Chakhari, Jamel
    Nasraoui, Mohamed Tahar
    Mrad, Charfeddine
    Khalfi, Boubaker
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY-TRANSACTIONS OF MECHANICAL ENGINEERING, 2023, 47 (02) : 513 - 526
  • [42] Design and Modeling of Piezoelectric Energy Harvester Under Variable Pressure in Pipe Flow
    Jamel Chakhari
    Mohamed Tahar Nasraoui
    Charfeddine Mrad
    Boubaker Khalfi
    Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 2023, 47 : 513 - 526
  • [43] Design, modeling, and experiment of a multi-bifurcated cantilever piezoelectric energy harvester
    Chen, Yu
    Yang, Zhichun
    Chen, Zhaolin
    Li, Kui
    Zhou, Shengxi
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2021, 32 (20) : 2403 - 2419
  • [44] Design of Energy Harvester Circuit for a MFC Piezoelectric based on Electrical Circuit Modeling
    Tungpimolrut, K.
    Hatti, N.
    Phontip, J.
    Komoljindakul, K.
    Pechrach, K.
    Manooonpong, P.
    2011 INTERNATIONAL SYMPOSIUM ON APPLICATIONS OF FERROELECTRICS (ISAF/PFM) AND 2011 INTERNATIONAL SYMPOSIUM ON PIEZORESPONSE FORCE MICROSCOPY AND NANOSCALE PHENOMENA IN POLAR MATERIALS, 2011,
  • [45] Piezoelectric Energy Harvester Design and Power Conditioning
    Kumar, Dhananjay
    Chaturvedi, Pradyumn
    Jejurikar, Nupur
    2014 IEEE STUDENTS' CONFERENCE ON ELECTRICAL, ELECTRONICS AND COMPUTER SCIENCE (SCEECS), 2014,
  • [46] Design and development of a multipurpose piezoelectric energy harvester
    Fan, Kangqi
    Chang, Jianwei
    Chao, Fengbo
    Pedrycz, Witold
    ENERGY CONVERSION AND MANAGEMENT, 2015, 96 : 430 - 439
  • [47] Design of a Honeycomb Shaped Piezoelectric Energy Harvester
    Kim, Na-Lee
    Jeong, Seong-Su
    Cheon, Seong-Kyu
    Park, Jong-Kyu
    Kim, Myong-Ho
    Park, Tae-Gone
    FERROELECTRICS, 2013, 450 (01) : 74 - 83
  • [48] Broadband design of hybrid piezoelectric energy harvester
    Tan, Ting
    Yan, Zhimiao
    Huang, Wenhu
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2017, 131 : 516 - 526
  • [49] PIEZOELECTRIC VIBRATION ENERGY HARVESTER - DESIGN AND PROTOTYPE
    Cojocariu, Bogdan
    Hill, Anthony
    Escudero, Alejandra
    Xiao, Han
    Wang, Xu
    INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION - 2012, VOL 12, 2013, : 451 - 460
  • [50] Nanoscale piezoelectric vibration energy harvester design
    Foruzande, Hamid Reza
    Hajnayeb, Ali
    Yaghootian, Amin
    AIP ADVANCES, 2017, 7 (09)