Design, optimization, modeling and testing of a piezoelectric footwear energy harvester

被引:144
|
作者
Qian, Feng [1 ]
Xu, Tian-Bing [2 ]
Zuo, Lei [1 ]
机构
[1] Virginia Tech, Dept Mech Engn, Blacksburg, VA 24061 USA
[2] Old Dominion Univ, Dept Mech & Aerosp Engn, Norfolk, VA 23529 USA
关键词
Energy harvesting; Human walking; Force amplification frame; Piezoelectric stack; Biogeography-based optimization; BIOGEOGRAPHY-BASED OPTIMIZATION; BIOMECHANICAL ENERGY; TRIBOELECTRIC NANOGENERATOR; HUMAN MOTIONS; WALKING; ELECTRICITY; DEVICES; DRIVEN;
D O I
10.1016/j.enconman.2018.06.069
中图分类号
O414.1 [热力学];
学科分类号
摘要
A footwear harvester needs to fulfill both technical and practical functionalities, including but not limited to energy extracting and storage, easy implantation and durability. The very limited space in a shoe is the key challenge to the design of a footwear harvester. This paper presents the design, optimization, modeling and testing of an embedded piezoelectric footwear harvester for energy scavenging from human walking. A force amplification frame is designed and optimized to transmit and amplify the vertical heel-strike force to the inner piezoelectric stack deployed in the horizontal direction. Two heel-shaped aluminum plates are employed to gather and transfer the dynamic force over the heel to the sandwiched force amplification frames. The dynamic force at the heel is measured to design, optimize and simulate the piezoelectric footwear harvester. A numerical model is developed and validated to be capable of precisely predicting the electrical outputs of the harvester. Two prototypes, respectively including eight and six stacks, are fabricated and tested on a treadmill at different walking speeds and external resistances. The numerical simulations agree well with experiments. The harvester with fewer piezoelectric stacks could produce more power at the same walking speed and matched resistance. Experimental results manifest that the footwear harvesters with eight and six stacks, respectively, have 7 mW/shoe and 9 mW/shoe average power outputs at the walking speeds of 3.0 mph (4.8 km/h). Simulation results from the validated numerical model show that the harvester with four piezoelectric stacks could harvest 14 mW/shoe and 20 mW/shoe average power at 3.0 mph (4.8 km/h) and 3.5 mph (5.6 km/h), respectively.
引用
收藏
页码:1352 / 1364
页数:13
相关论文
共 50 条
  • [21] Modeling and Dynamic Design of a Piezoelectric Cantilever Energy Harvester with Surface Constraints
    Cao, Xinyu
    Han, Jianxin
    Zhang, Qichang
    JOURNAL OF VIBRATION ENGINEERING & TECHNOLOGIES, 2024, 12 (03) : 4931 - 4952
  • [22] Design, modeling and experiments of broadband tristable galloping piezoelectric energy harvester
    Wang, Junlei
    Geng, Linfeng
    Zhou, Shengxi
    Zhang, Zhien
    Lai, Zhihui
    Yurchenko, Daniil
    ACTA MECHANICA SINICA, 2020, 36 (03) : 592 - 605
  • [23] Design, modeling and experiments of broadband tristable galloping piezoelectric energy harvester
    Junlei Wang
    Linfeng Geng
    Shengxi Zhou
    Zhien Zhang
    Zhihui Lai
    Daniil Yurchenko
    Acta Mechanica Sinica, 2020, 36 : 592 - 605
  • [24] Development and Testing of a MEMS Piezoelectric Energy Harvester
    Knight, Ryan R.
    Mo, Changki
    Clark, William W.
    ACTIVE AND PASSIVE SMART STRUCTURES AND INTEGRATED SYSTEMS 2009, 2009, 7288
  • [25] Design and testing of a new dual-axial underfloor piezoelectric energy harvester
    Wu, Zehao
    Xu, Qingsong
    SENSORS AND ACTUATORS A-PHYSICAL, 2020, 303
  • [26] Design and testing of a new dual-axial underfloor piezoelectric energy harvester
    Wu, Zehao
    Xu, Qingsong
    Xu, Qingsong (qsxu@umac.mo), 1600, Elsevier B.V., Netherlands (303):
  • [27] SIZE OPTIMIZATION OF CONICAL PIEZOELECTRIC ENERGY HARVESTER
    Li, Hua
    Hu, Shun-di
    Tzou, Horn-sen
    2011 SYMPOSIUM ON PIEZOELECTRICITY, ACOUSTIC WAVES AND DEVICE APPLICATIONS (SPAWDA), 2011, : 485 - 488
  • [28] Optimization for cantilever piezoelectric energy harvester with a cavity
    Chen, L. H.
    Xue, J. T.
    Chang, L. Q.
    Yang, F. H.
    2ND INTERNATIONAL CONFERENCE ON MATERIAL STRENGTH AND APPLIED MECHANICS, 2019, 629
  • [29] Topology Optimization of Miniaturized Piezoelectric Energy Harvester
    Hu, Siyang
    Fitzer, Ulrike
    Bechtold, Tamara
    2021 22ND INTERNATIONAL CONFERENCE ON THERMAL, MECHANICAL AND MULTI-PHYSICS SIMULATION AND EXPERIMENTS IN MICROELECTRONICS AND MICROSYSTEMS (EUROSIME), 2021,
  • [30] Analysis of an optimization problem for a piezoelectric energy harvester
    Kaltenbacher, Barbara
    Krejci, Pavel
    ARCHIVE OF APPLIED MECHANICS, 2019, 89 (06) : 1103 - 1122