Spin drift-diffusion transport and its applications in semiconductors

被引:7
|
作者
Miah, M. Idrish [1 ,2 ]
Gray, E. MacA. [1 ]
机构
[1] Griffith Univ, Nanoscale Sci & Technol Ctr, Sch Biomol & Phys Sci, Brisbane, Qld 4111, Australia
[2] Univ Chittagong, Dept Phys, Chittagong 4331, Bangladesh
来源
关键词
Semiconductor; Spin drift-diffusion transport; Drift-diffusion crossover; Spin diffusion length; INJECTION; ELECTRONS; LIGHT;
D O I
10.1016/j.cossms.2009.02.002
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study theoretically the propagation and distribution of electron spin density in semiconductors within the drift-diffusion model in an external electric field. From the solution of the spin drift-diffusion equation, we derive the expressions for spin currents in the down-stream (DS) and up-stream (US) directions. We find that drift and diffusion currents contribute to the spin current and there is an electric field, called the drift-diffusion crossover field, where the drift and diffusion mechanisms contribute equally to the spin current in the DS direction, and that the spin current in the US direction vanishes when the electric field is very large. We calculate the drift-diffusion crossover field and show that the intrinsic spin diffusion length in a semiconductor can be determined directly from it if the temperature, electron density and both the temperature and electron density, respectively, are known for nondegenerate, highly degenerate and degenerate systems. The results will be useful in obtaining transport properties of the electron's spin in semiconductors, the essential information for spintronic technology. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:99 / 104
页数:6
相关论文
共 50 条
  • [31] Nonlocal transport of heat in equilibrium drift-diffusion systems
    Stabler, Florian
    Sukhorukov, Eugene
    PHYSICAL REVIEW B, 2023, 107 (04)
  • [32] Modification of drift-diffusion model for short base transport
    Karamarkovic, JP
    Jankovic, ND
    ELECTRONICS LETTERS, 2000, 36 (24) : 2047 - 2048
  • [33] Modeling anomalous charge carrier transport in disordered organic semiconductors using the fractional drift-diffusion equation
    Choo, K. Y.
    Muniandy, S. V.
    Woon, K. L.
    Gan, M. T.
    Ong, D. S.
    ORGANIC ELECTRONICS, 2017, 41 : 157 - 165
  • [34] Quantum Energy-Transport and Drift-Diffusion Models
    Pierre Degond
    Florian Méhats
    Christian Ringhofer
    Journal of Statistical Physics, 2005, 118 : 625 - 667
  • [35] Asymptotical and numerical analysis of degeneracy effects on the drift-diffusion equations for semiconductors
    Fuchs, F
    Poupaud, F
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1995, 5 (08): : 1093 - 1111
  • [36] Elastic and drift-diffusion limits of electron-phonon interaction in semiconductors
    Schmeiser, C
    Zwirchmayr, A
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1998, 8 (01): : 37 - 53
  • [37] Quasineutral limit of the drift-diffusion model for semiconductors with general initial data
    Schmeiser, C
    Wang, S
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2003, 13 (04): : 463 - 470
  • [38] QUASI-NEUTRAL LIMIT OF THE MULTIDIMENSIONAL DRIFT-DIFFUSION MODELS FOR SEMICONDUCTORS
    Ju, Qiangchang
    Wang, Shu
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2010, 20 (09): : 1649 - 1679
  • [39] QUALITATIVE BEHAVIOR OF SOLUTIONS OF A DEGENERATE NONLINEAR DRIFT-DIFFUSION MODEL FOR SEMICONDUCTORS
    JUNGEL, A
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1995, 5 (04): : 497 - 518
  • [40] Symmetry analysis and exact invariant solutions for the drift-diffusion model of semiconductors
    Romano, V
    Sellier, JM
    Torrisi, M
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 341 : 62 - 72